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Final Project Report

Introduction

The objective of this project was to develop an algorithmic framework that
enables effective and efficient mapping of data intensive applications onto
Intelligent and Smart memory architectures, as well as traditional cache
architectures. Intelligent memories integrate processing logic on the same
chip as memory and support high bandwidth and low latency memory ac-
cess to on-chip memory. Smart memory architectures provide the ability
to adapt the hardware behavior by modifying the memory controllers to
enhance cache and memory performance. Effective use of these novel fea-
tures requires innovative mapping techniques in addition to the utilization
of higher bandwidth and/or lower latency offered by these advanced archi-

tectures.

This report details the research accomplished in this project. In Section
1 we present a summary of the work accomplished, highlighting some of
the results and approaches investigated. Section 2 contains copies of all
papers published that acknowledge this contract. Section 3 contains the fi-
nal stressmark results and analysis of the methods used to optimize various
data-intensive stressmarks. Section 4 contains information about the source
code, including methods for building the code, and the platforms for which

the code is intended.

The CD included with this binder contains all of the source code used in
the project, with instructions for building the code, and a soft copy of the

complete report.

/"""""
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� Introduction

The motivation for this work is what is commonly referred to as the processor
memory gap ��� ���
�� ���� While memory density has been growing rapidly� the speed of memory has been far outpaced
by the speed of modern processors� Current latencies to memory are on the order of ��� processor
cycles ����� This phenomenon has resulted in severe application level performance degradation on
high
end systems� This problem has been well studied for many applications� such as dense linear
algebra problems ��	�� including matrix multiplication and FFT�

Achieving better overall performance by optimizing cache performance is a di�cult problem�
The performance of deep memory hierarchies present in most modern processors has been shown
to di�er signi�cantly from predictions based on a single level of cache� Di�erent miss penalties for
each level of the memory hierarchy� as well as the Translation Lookaside Bu�erTLB�� a�ect the
e�ectiveness of cache
friendly optimizations ���� ��� These penalties vary among processors and
cause large variations in the e�ectiveness of cache performance optimizations�

The area of graph problems is fundamental in a wide variety of �elds� most notably network
routing� distributed computing� and computer aided circuit design� Network routing in particular
is a rapidly growing problem with the explosion of the Internet� Routing tables are growing in size
and the frequency of updates is pushing the limits of current routers ����� Graph problems pose
unique challenges to improving cache performance due to their irregular data access patterns ����
These challenges often cannot be handled using standard cache
friendly optimizations� The focus
of this research is to develop methods of meeting these challenges�

The objective of this project was to develop an algorithmic framework that enables e�ective and
e�cient mapping of data intensive applications onto Intelligent and Smart memory architectures
���� Intelligent memories integrate processing logic on the same chip as memory and support high
bandwidth and low latency memory access to on
chip memory ���� �� ���� Smart memory archi

tectures provide the ability to adapt the hardware behavior by modifying the memory controllers
to enhance cache and memory performance ���� ���� E�ective use of these novel features requires
innovative mapping techniques in addition to the utilization of higher bandwidth and�or lower
latency o�ered by these advanced architectures�

A suite of data intensive kernels or stressmarks designed to stress the memory hierarchy was
provided by the Data Intensive Systems Program �	�� We have explored various optimizations of
these stressmarks� including cache
friendly data layouts such as block layouts and recursive layouts�
and we have developed simulators that can model these applications on cutting
edge processor
architectures�

During the course of this project the focus Figure �� has been on techniques for improving
and understanding cache performance on traditional� cache
based processors� The majority of the
work was done for the Data Intensive Systems stressmark package� It includes transitive closure
stressmark� BiConjugate Gradient� FFT� pointer following� and others� It was also shown that
these techniques can be used on a large class of algorithms�

Signi�cant contributions include the Unidirectional Space Time Representation USTR� and a
tiled and a novel recursive implementation of the Floyd
Warshall algorithm� Using the USTR it is
possible to quickly generate cache
friendly implementations of a large class of algorithms� Simula

tors and stressmark implementations were developed for �exible memory architectures FMA� with
split caches� Processor
Integrated
Memory PIM� systems� and a recursive simulator for massively
parallel systems such as the IBM BlueGene�

�
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Figure �� Accomplishments of the Advisor project

� Summary of Accomplishments

��� Introduction to Memory Performance Optimizations

For most regular and irregular applications� cache and TLB behavior has a signi�cant e�ect on
performance� Memory in modern microprocessor systems is composed of a hierarchy of small� fast
memories fed by large� slower memories Figure ��� The Cache is a small memory area where
recently and often used data is stored on the assumption that it will be used again soon� This
prevents long delays in accessing the main memory� The TLB� or Translation Lookaside Bu�er�
is an even smaller� special purpose memory that holds a limited amount of information to help
applications convert their memory references into addresses in the physical memory system ����
State
of
the
art data layouts and control transformations attempt to minimize capacity misses and
interference misses in the cache hierarchy� Control optimizations like tiling reduce the working set
and improve cache behavior by reducing capacity misses�

MemoryProcessor Cache

T
L
B

MemoryProcessor Cache

T
L
B

Figure �� Memory hierarchy of a general microprocessor system

We have performed analysis of TLB� cache and DRAM behavior for various algorithms like
matrix multiplication and a class of graph algorithms� Our work extends previous research on ana

lyzing cache performance by taking a uni�ed approach towards the tradeo�s involved in optimizing
data and control transformations for various levels of the cache hierarchy� We have demonstrated
speedups for these algorithms by selectively applying novel optimizations in addition to a set of
common optimizations� based on cache behavior analysis� We formalized the lessons learned in the
form of rules for a compiler framework for loop optimizations in data intensive computations�

�
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����� Unidirectional Space Time Representation

The Floyd
Warshall algorithm is a dynamic programming algorithm ���� which computes a series
of N � N �N matrices where Dk is the kth matrix and is de�ned as follows� Dk

�i�j� � shortest path

from vertex i to vertex j composed of the subset of vertices labeled � to k� The matrix D� is the
original graph G� We can think of the algorithm as composed of N steps� At each kth step� we
compute Dk using the data from Dk�� in the manner shown in Figure � for each i� j�th value�
Dijkstra�s algorithm is designed to solve the single
source shortest path problem� It does this by
repeatedly extracting from a priority queue Q the nearest vertex u to the source� given the distances
known thus far in the computation Extract
Min operation�� Once this nearest vertex is selected�
all vertices v that neighbor u are updated with a new distance from the source Update operation��

Transitive closure� as an irregular problem� poses unique challenges to improving cache perfor

mance� challenges that often cannot be handled by standard cache
friendly optimizations�

A number of approaches have been taken to address the Transitive Closure stressmark� We
have evaluated various approaches to optimize its performance with respect to processing time
and processor
memory tra�c� In this area we have also considered the single source shortest path
problem� the minimum spanning tree problem and the problem of graph matching as these are
related graph problems�

The Unidirectional Space Time Representation USTR� was developed to uniquely address the
complexities of transitive closure�

…

…

A11

A12

A1N

A11

A21

A1N

= processor for result (i, j)

…

…

A21

A12 …

…

A11

A12

A1N

A11

A21

A1N

= processor for result (i, j)

…

…

A21

A12

A = Adjacency Matrix

Figure �� Simple USTR for Transitive Closure

First we will explain what we mean by a space
time representation� Consider a problem in which
the result is an N �N matrix� We divide the problem in space by representing the computation
required to calculate each result as a computational element CE� in an N �N array� for example�
the multiply
add operations required in a matrix multiply� Referring to Figure �� each circle in the
space represents the computation required for the i� j�th result� The notion of time comes from
the data �owing through this N �N array of CEs�

Referring to Figure � again� the data A would �ow row
wise into the array from the left and the
data B would �ow column
wise into the array from the top� As the data �ows through the array�
each element does some simple computation on the data inside it and passes on the data� Once
the data has �owed completely through the array� the i� j�th result lies in the corresponding CE�
The space
time representation is much like a systolic array design� If each CE were viewed as a
processor� the result would be an N �N systolic array� The distinction that we add is the notion

�
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of unidirectional data �ow� We only allow data to �ow in the forward direction� either down or to
the right� This allows us to generate a cache
friendly implementation�

In general the following to any problem that can be solved using an Unidirectional Space Time
representation�

Theorem�Given an USTR of an algorithm� we can reduce the amount of processor�memory traf�

�c by a factor of �� where cache size is O���� compared with a baseline implementation�

The USTR implementation of the Floyd
Warshall algorithm was shown in Simplescalar simu

lations to give a ��x decrease in level
� cache misses based on the Pentium III architecture�� This
implementation out
performed the best compiler optimizations by a factor of � on the Pentium III�
Alpha� and MIPS R����� architectures� It can also be shown that the USTR implementation of
the Floyd
Warshall algorithm is asymptotically optimal with respect to processor
memory tra�c�
These results are detailed in �Cache Friendly Implementations of Transitive Closure� by Michael
Penner and Viktor Prasanna� which appeared in the proceedings of PACT ����� and is contained
in Section �� A novel recursive implementation as well as a new blocked implementation of the
Floyd
Warshall algorithm have also been developed� In initial experiments these implementations
show a ��x improvement over the compiler optimized implementation on the MIPS R������ They
also show between �x and �x for the Pentium III� Alpha� and SUN ULTRASPARC III� The source
code for these optimizations is contained in Section ��

����� Tiled Implementation of the Floyd	Warshall algorithm

The basic goal of tiling is to reduce the work set size so that the problem will �t into the cache�
Through our technique we satisfy the data
dependencies by reordering the smaller problems or
tiles� This technique showed up to ��x improvement for the Floyd
Warshall algorithm� This
implementation was also shown to be asymptotically optimal with respect to processor
memory
tra�c�

Compiler groups have used tiling to achieve higher data reuse in looped code� Unfortunately� the
data dependencies from one k
loop to the next in the Floyd
Warshall algorithm make it impossible
for current compilers including research compilers to perform � levels of tiling� In order to tile the
outermost loop we must cleverly reorder the tiles in such a way that satis�es data dependencies
from one k
loop to the next as well as within each k
loop�

Consider the following tiled implementation of the Floyd
Warshall algorithm� Tile the problem
into B�B tiles� During the kth block iteration� update �rst the k� k�th tile� then the remainder of
the k th row and kth column� then the rest of the matrix� Figure � shows an example matrix tiled
into a �x� matrix of blocks� Each block is of size B � B� During each outermost loop� we would
update �rst the black tile representing the k� k�th tile� then the grey tiles� then the white tiles�
In this way we satisfy all dependencies from each kth loop to the next as well as all dependencies
within each kth loop�

Theorem� The new tiled implementation of the Floyd�Warshall algorithm reduces the processor

memory tra�c by a factor of B where B� is on the order of the cache size�

For more information� see �Optimizing Graph Algorithms for Improved Cache Performance��
in Proceedings of the International Parallel and Distributed Processing Symposium� April �����
Joon
Sang Park� Michael Penner� and Viktor K� Prasanna�

�
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����� Data Layouts for Recursive Programs

Recursive implementations have recently been used to increase cache performance� However� Floyd

Warshall has proven to be di�cult to implement recursively� because the Floyd
Warshall algorithm
not only contains all the dependencies present in ordinary matrix multiplication� but also additional
dependencies that can not be satis�ed by the simple recursive implementation of matrix multiply�
We have developed a novel recursive implementation of the Floyd
Warshall algorithm� which ap

pears in Figure �� We also proved the correctness of the implementation and showed analytically
that it reaches an asymptotically optimal amount of processor memory tra�c�

Floyd-Warshall (A)

{

A11 = min(A11, A11+A11);

A12 = min(A12, A11+A12);

A21 = min(A21, A21+A11);

A22 = min(A22, A21+A12);

A22 = min(A22, A22+A22);

A21 = min(A21, A22+A21);

A12 = min(A12, A12+A22);

A11 = min(A11, A12+A21);

}

FWR (A, B, C)

{

if (not base case)

{

FWR(A11, B11, C11);

FWR(A12, B11, C12);

FWR(A21, B21, C11);

FWR(A22, B21, C12);

FWR(A22, B22, C22);

FWR(A21, B22, C21);

FWR(A12, B12, C22);

FWR(A11, B12, C21);

}

        else

{

/* run standard Floyd-Warshall */

…

}

}


a� 
b�

Figure �� Floyd
Warshall Source a� Base case algorithm b� Recursive algorithm

The Z
Morton layout Figure �c�� has been used to match the data layout to the access pattern�
The Z
Morton ordering is a recursive layout de�ned as follows� Divide the original matrix into �
quadrants and lay these tiles in memory in the order NW� NE� SW� SE� Recursively divide each
quadrant until a limiting condition is reach� This smallest tile is typically laid out in either row or
column major fashion Elements laid out row
wise inside blocks�

Through experiments on four di�erent architectures we show that our Block Data Layout Fig

ure �b�� performs equally as well as the Z
Morton layout for recursive programs� The Z
Morton
layout has also been used as a non
linear array layout for tiled applications� In this context� we
show that our Block Data layout performs equally as well and signi�cantly decreases the index
computation costs�

We showed up to �x improvement when we set the base case such that the base case would
utilize more of the cache closest to the processor� Once we reached a problem size B� where B� is on
the order of the cache size� we execute a standard iterative implementation of the Floyd
Warshall
algorithm� This improvement varied from one machine to the next and is due to the decrease in the
overhead of recursion� We have shown that the number of recursive calls in the recursive algorithm
is reduced by a factor of B� when we stop the recursion at a problem of size B�

�
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Figure �� Various data layouts� block size �� � for b� and c�

����� Graph Matching

Graph matching is an important problem that �nds uses in pattern recognition for computer vision�
face recognition and tracking of objects�

Graph matching forces algorithm designers to deal with dependencies that require possible
examination of the entire graph during each step of the computation� By partitioning the graph
into sub
graphs that will �t into the cache and �nding the local maximum we can drastically reduce
total amount of work for the entire graph Figure ��� Experimental results show performance
improvements are highly dependent on the density of the graph� For dense graphs a very good
match can be found in the initial tiled phase and execution time can be improved by as much as
��x� Average performance improvements ranged between �x and �x Figure ���

CacheFriendlyMatching(G)
{

Partition G into g[1], g[1], …, g[p];
For i = 1  to p

m[i] = FindMatching(g[i],     );
M = MergeAll(m);
M = FindMatching(G, M);
return M;

}

0

�a�

FindMatching(G, M)
{

while (there exists an augmenting path)
{

increase |M| by one using the augmenting path;
}
return M;

}

�b�

Figure �� Pseudocode for Graph Matching techniques

Our technique is not just an alternative way of �nding a good starting matching� although it
may seem like� but a general framework for improving performance of algorithms� For example�
our technique allows additional enhancement in the presence of any greedy procedure for �nding a
good starting point by regarding the greedy procedure plus augmenting as a whole algorithm and
applying our technique�

Roughly speaking� the complexity of our new implementation of matching algorithm depends on
the graph
partitioning algorithm used in the �rst stage� The bound of the cardinality of a matching
obtained at the �rst stage determines the overall complexity and the partitioning algorithm a�ects
the bound� Also the complexity of partitioning algorithm itself a�ects the overall complexity our
algorithm if it becomes the dominant factor�
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 Speed-up vs. density results

Cache Performance

Baseline New impl.

Accesses 853 578

Misses 127 32

Miss Rate 14.86% 5.56%

(Input: 8K nodes, 0.1 density)
6
)(10

0

1

2

3

4

5

0 0.1 0.2 0.3 0.4

Density

Pentium III UltraSPARC III

Figure �� Graph Matching Optimization Results

We presented a paper� �Optimizing Graph Algorithms for Improved Cache Performance�� at the
��th annual IEEE � ACM International Parallel and Distributed Processing Symposium IPDPS
������ This paper can be found in Section �� Our graph matching strategy used combinations of
a number of di�erent techniques�

����� Block Data Layout Optimization

Several experimental studies were conducted on block data layout as a data transformation tech

nique used in conjunction with tiling to improve cache performance�

To support multi
dimensional array representations in current programming languages� the
default data layout is row
major or column
major� denoted as canonical layouts� Both row
major
and column
major layouts have similar drawbacks� For example� consider a large matrix stored
in row
major layout� Due to large stride� column accesses can cause cache con�icts� Further� if
every row in a matrix is larger than the size of a page� column accesses can cause TLB thrashing�
resulting in drastic performance degradation� In block data layout� a large matrix is partitioned
into sub
matrices� Each sub
matrix is a B � B matrix and all elements in the sub
matrix are
mapped onto contiguous memory locations� The blocks are arranged in row
major order�

For standard matrix access patterns� we found an asymptotic lower bound on the number of
TLB misses for any data layout�

�N�

p
PStlb

��

Block data layout achieves this bound� We have shown that block data layout improves TLB
misses by a factor of OB� compared with conventional data layouts� where B is the block size of
the block data layout�

These results were published as �Analysis of Memory Hierarchy Performance of Block Data
Layout� in the International Conference on Parallel Processing ICPP ������ August ����� The
paper can be found in Section ��

We also applied the Block Data Layout to the transitive closure problem� The analysis of this
optimization is very similar to that of the tiled and copied optimization� Since the dependencies
still require updating the entire matrix in each kth loop� the total processor
memory tra�c will be
ON��� Since each tile is in contiguous memory locations and is equal to O�� TLB pages� this only

requires O�� TLB misses for each tile of computation� This gives a total of ON
�

��
� � TLB misses

and a working set of O�� pages� Recall that in the usual implementation� the working set was a
row of the adjacency matrix� This was laid out in contiguous memory locations� so the working set
of pages is O��� In the tiled version� we showed the working set of pages was O���

�
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The experimental results for the Block Data Layout optimization showed performance increases
in the range of �� to ��� on the Pentium III and approximately ��� on the Alpha�

The work on Block Data Layout for the transitive closure problem was published by Michael
Penner and Viktor K� Prasanna as �Cache Friendly Implementations of Transitive Closure�� in the
Proceedings of International Conference on Parallel Architectures and Compilation Techniques�
September �����

����� Cache	conscious data layout based on Perfect Latin Squares

The theory of Perfect Latin Squares PLS� was originally co
developed by the PI in the context
of parallel memory systems ��� ���� Perfect Latin Squares were used as a mathematical framework
for data distribution among parallel memory banks to minimize memory bank con�icts for array
accesses� In the context of cache memories� we have applied the PLS methodologies to de�ne data
layouts to minimize cache con�icts in a uniprocessor memory hierarchy�

3 60 1 7 24 5 8
2 5 8 3 60 1 74
1 74 2 5 8
3

60 3
6 0 4 7 1 5 8 2

5 8 2 3 6 0 4 7 1
4 7 1 5 8 2 3 6 0
6 0 3 7 1 4 8 2 5
8 2 5 6 0 3 7 1 4
7 1 4 8 2 5 6 0 3

3 60 1 7 24 5 8
2 5 8 3 60 1 74
1 74 2 5 8
3

60 3
6 0 4 7 1 5 8 2

5 8 2 3 6 0 4 7 1
4 7 1 5 8 2 3 6 0
6 0 3 7 1 4 8 2 5
8 2 5 6 0 3 7 1 4
7 1 4 8 2 5 6 0 3

Figure 	� Perfect Latin Square

A Latin square of order N is an N � N square composed with symbols from � to n � � such
that no symbol appears more than once in any row or in any column ���� The rows are numbered
from � to N � l� top to bottom� The columns are also numbered from � to N � l� left to right� The
squares �a� and �b� shown below are examples of Latin squares of order ��

We de�ne a perfect Latin square of order N� as a diagonal Latin square of order N� such
that no symbol appears more than once in any main subsquare� Hence� in a perfect Latin square�
no symbol appears more than once in any row� in any column� in any diagonal or in any main
subsquare�

For an N��N� matrix� a PLS
based mapping can be generated that provides con�ict
free access
to rows� columns� main diagonals� and major sub
squares� If the cache associativity is two or more�
this mapping also generates con�ict
free access to arbitrary sub
squares� Address computation is

�
BBB�

� � � �
� � � �
� � � �
� � � �

�
CCCA

�a� Latin Square

�
BBB�

� � � �
� � � �
� � � �
� � � �

�
CCCA

�b� PLS

Figure �� Latin Squares� In both squares� no symbol appears more than once in a single row or
column� In b� this is also true for diagonals and main subsquares
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also an important issue in any irregular mapping technique� For the PLS based mapping� we have
shown that address computation can be done in constant time�

PLS
based array layouts for a generic matrix access achieved up to ON�� reduction in cache
con�icts for column access and ON� reduction in cache con�icts for any majorN�N subsquare ac

cess� The improvement is in comparison with the standard row
major layout� These improvements
were demonstrated both theoretically and through simulations on the SimpleScalar architecture
simulator�

��� Performance Improvements

We applied many optimization techniques for several problems over the course of our research�
Figures ����������������� are some of our cache optimization results not presented elsewhere in this
paper for transitive closure and graph matching�
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Pairs Shortest Path results comparing e�cient implementations with our �cache
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Figure ��� The Floyd
Warshall Algorithm� Tiling with Block Data Layout� Block layout reduces
self
interference misses and TLB misses
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Figure ��� The Optimized USTR Implementation for the Floyd
Warshall Algorithm� The Opti

mized USTR provides approximately �x performance improvement over the best standard Floyd

Warshall implementation
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Figure ��� Floyd
Warshall Algorithm Optimizations� Replacing in
cache computation with stan

dard Floyd
Warshall code gave ��� improvement over fully recursive implementation

��� Modeling and Simulation of Flexible Memory Architectures

Memory system performance is a key limiting factor in today�s computer systems� Traditional
cache replacement policies are often ine�cient for modern application software� On the temporal
side� data is not always placed in cache according to its temporal locality� In many applications�
large data structures with low temporal reuse compete for cache space� although small data struc

tures with high temporal reuse are desirable� Our work addressed ine�ciencies directly through
application software� On the spatial side� traditional architectures have di�culty dealing with
data references of di�erent spatial localities at the same time� Explicit management can solve this
problem by separating data references into di�erent caches�

The idea of explicit cache management as an architectural feature can be found in several modern
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Figure ��� Graph Matching Optimizations� a� Average Case� randomly generated graph b� Best
case� graph designed such that maximum matching is found in the �rst stage

processors� The cache in the Itanium architecture is divided into a �temporal structure� and a
�spatial structure� at each level� A bit �eld in each load�store�prefetch instruction speci�es which
structure to use� Intel XScale has a ��K �Data Cache� and a �K �Mini
Data Cache�� A bit �eld in
page table controls which cache to use� Intel StrongARM also has a similar design� UltraSPARC
III Cu has a �K prefetch cache in addition to the regular cache� A prefetch instruction can fetch
data into one or both of the caches� HPL�PD� which is a reference architecture and simulated by
Trimaran�IMPACT compiler infrastructure� has L�� L� cache and a prefetch cache� It also uses a
bit �eld in load�store instructions to control which cache to use� Similar architectures can also be
found in several papers� such as Split Temporal�Spatial Cache and Dual Data Cache� ���� ���

In these architectures� software can control hardware mechanisms of memory hierarchy directly�
We call this explicit cache management� The name is used to distinguish from hardware only
approaches� which are automatic implicit�� We de�ne a generalized split temporal�spatial cache
simulator architecture Figure ���� to support explicit cache management algorithms in this paper�
The idea of explicit cache management� however� is not limited to this type of architectures�
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Figure ��� Flexible Memory Architecture FMA� simulator architecture

We developed a uni�ed Flexible Memory Architecture FMA� model Figure ��� that abstracts
a �exible� parameterized memory hierarchy� The Intelligent and Smart memory architectures being
developed by other Data Intensive Systems projects are a subset of the range of advanced memory
architectures the model is capable of representing� The uni�ed FMA model provides a framework
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for e�cient modeling� representation and manipulation of memory hierarchy parameters in an
architecture
independent fashion� The uniqueness of our model and the simulator based on it� lies
in its ability to integrate the requirements of many DIS projects and provide a common platform
for technology transfer�

Processor

Smart MC

Memory

Allows software to 
control data movement 

Processor

Smart MC

Memory

Allows software to 
control data movement 

Figure ��� Smart Memory Architectures allow software to control data movement within memory
hierarchy

In our work� we de�ned the generalized split temporal�spatial cache architecture as an abstrac

tion of several advanced cache architectures� Individual problems were analyzed� ine�ciencies in
the memory hierarchy were identi�ed and explicit cache management algorithms were developed�
The problems include the sparse matrix vector multiplication problem from the conjugate gradient
stressmark and problems from data structure and graph applications� According to our timing
model� the average memory access time of the sparse matrix vector multiplication problem can be
reduced by ��� to ��� over a broad range of cache con�gurations Figure �	��

We published a technical report� �Application Directed Explicit Management for Advanced
Cache Architectures�� USC CENG October �����
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Figure �	� Flexible Memory Architecture FMA� simulator results for the matrix stressmark

The uni�ed FMA simulator based on the model is available� and the source is contained in the
Appendix of this document� The purpose of the FMA simulator is to provide a �rst
order evaluation
of the e�cacy of algorithmic techniques to improve memory performance of irregular� applications
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on advanced memory architectures� Modeling a �exible� parameterized memory hierarchy provides
a common platform for exploring the advanced memory architecture space without depending on
availability of low
level simulators for the various memory architectures being developed in the DIS
program� Also� from an algorithm designer�s perspective� the simulator provides a rapid estimation
of the relative performance of alternate data layouts� memory hierarchies� etc� without a time

consuming low
level simulation on a speci�c advanced memory architecture simulator� The current
version of the FMA simulator allows the algorithm designer to specify the initial cache con�gurations
and a set of alternate con�gurations Figure ���� The alternate con�gurations are labeled with the
position in the access string where the cache needs to be recon�gured� The parameters that can
be dynamically varied are the line size� cache size� and associativity�

:Init
L1 4096 1 8 RAND
L2 65536 4 8 LRU

:R 100
L2 SetEn 3
L1 LineSize 4
L1 Assoc 2

:MemMapSeg
1000 1020
:AccMapRange
10000

:AccStatSeg
0 1000
1000 5000
:MemStatSeg
0 1000

:Timing
L1 0.2 0 4 2 6 4 8 8 12 16 
20 32 36
L2 1 0 20 2 30 4 40 8 60 16 
100 32 180

Cache configuration:
L<level>  <size> <line size> <associativity> 
<repl. policy>

Reconfigure the cache after 100 accesses

Create placement tuples (profile) for data 
between 1000 and 1020; for the first 10000 
accesses

Record detailed statistics for accesses 0-1000 
and 1000-5000; for the first 1000 data elements

Timing Model
L<level> <hit time> <<line size 1> <miss time1>> …

:Init
L1 4096 1 8 RAND
L2 65536 4 8 LRU

:R 100
L2 SetEn 3
L1 LineSize 4
L1 Assoc 2

:MemMapSeg
1000 1020
:AccMapRange
10000

:AccStatSeg
0 1000
1000 5000
:MemStatSeg
0 1000

:Timing
L1 0.2 0 4 2 6 4 8 8 12 16 
20 32 36
L2 1 0 20 2 30 4 40 8 60 16 
100 32 180

Cache configuration:
L<level>  <size> <line size> <associativity> 
<repl. policy>

Reconfigure the cache after 100 accesses

Create placement tuples (profile) for data 
between 1000 and 1020; for the first 10000 
accesses

Record detailed statistics for accesses 0-1000 
and 1000-5000; for the first 1000 data elements

Timing Model
L<level> <hit time> <<line size 1> <miss time1>> …

Figure ��� Sample FMA Con�guration File

��� Performance Modeling of Processing�in�Memory �PIM� Architectures

Processing
In
Memory PIM� systems achieve tremendous memory
processor bandwidth by com

bining microprocessors and memory together on the same chip substrate� Commodity microproces

sors have steadily increased the size of their on
board caches� the speed and complexity of today�s
chips requires that instructions and data be immediately ready when requested by the processor�
The PIM architecture attempts the opposite tactic� instead of pushing data to the processor� PIM
moves the processors to the data� Instead of multiple levels of cache and a huge main memory�
PIM places a cache
less� comparatively simple processor directly on each memory chip�

PIM architectures Figure ��� o�er an order of magnitude more processor
memory bandwidth�
compared to traditional processor
memory architectures� without a cache hierarchy and the per

formance implications thereof� We de�ned a �rst
order PIM model� and a parameterized simulator
for various applications on various PIM architecture are available� Applications modeled include
�
D FFT� BiConjugate Gradient� corner turn� matrix multiply� transitive closure� and a molecular
dynamics simulation� We also provided veri�cation of the accuracy of the simulator for several
applications� a sample of which is in Figure ��� Architecture models include the Berkeley VIRAM�
USC
ISI DIVA� and a recursive model of the IBM BlueGene system� ��� ��� ���

Our high
level simulator predicts the performance execution time� of an application over var

ious PIM or application con�gurations� The parameters needed by the simulator characterize the
simulation instance� These include the number of PIM nodes� on
chip and o�
chip bandwidth for
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Figure ��� Processor
In
Memory PIM� Architectures have processors and memory on a single chip�

each node� network topology� and application parameters such as block size� resolution� or prob

lem size� and various replacement and coherence algorithms� The architecture modeled by the
simulator is not restricted to any speci�c PIM implementation due to its completely parametrized
nature� Our simulator is linked to a GUI which allows fast visualization of the e�ects of important
parameters�

Level n+1

Task Function

Function

Parameters

Level n

Returned

Requests

Simulation Results

Figure ��� Recursive System Structure

Our paper� �Performance Modeling and Interpretive Simulation of PIM Architectures and Ap

plications�� was presented at the 	th annual ACM Euro
Par Parallel and Distributed Processing
conference� �����

We continued with the PIM simulation framework and expanded it with support for massively
parallel systems� such as the IBM BlueGene�L� Instead of determining the performance of a sys

tem as composed of discrete nodes at what abstracts to be a single level� we form the nodes into
groups that are as homogeneous as possible� For each group� we create a parameter �le which
de�nes variables such as network topology� latencies in the network� and computational speeds�
The �le also de�nes the behavior of the system at that level� including what sort of computa

tional�communications operations need to be executed by that node or level� The simulator then
runs the parameter �les �recursively�� in that each parameter �le describes a collection of nodes�
each type of which have their own parameter �le and simulation process Figure ����

The performance modeling system can capture a wide range of complex behaviors without
de�ning distinct simulators for each level� and without de�ning away the variations that makes
each level of hierarchy unique� Moreover� we do this with a simulator that functions at a high
enough level so as to produce results quickly� on the order of seconds� and produce results su�cient
for optimization of data placement� network topology� and overall structure of the system�
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Figure ��� Comparison between high
level simulated BiConjugate Gradient on DIVA architecture
and DIVA team�s low
level simulation results

Number of BlueGene Boards

22   31    43    61     86      120     168     236      462

Total Time

Data Transfer

Interboard Comm.

Intraboard Comm.

104

105

Figure ��� A sample of execution results for the molecular dynamics application on the BlueGene�L
model

The host can send and receive data in a unicast or multicast fashion� either over a bus or a
high
bandwidth� switched network� The bus is modeled as a single datapath with parameterized
bus width� startup time� and per element transmission time�

The expanded recursive simulator o�ers robust topology and congestion management tools�
Network topology is de�ned between lower
level simulation blocks� Congestion is handled at the
network topology level� The simulator provides various ways of de�ning communication cost� The
most detailed and most time
consuming of the choices is a least
cost path routing which also records
the e�ect of congestion during a time step� The simulator collects all of the communication calls
that are speci�ed in the script to occur during a time interval and then adds them to the network
in an arbitrary fashion� An  n� deep queue is assigned the same cost as having to traverse an
unutilized  n� hop path� A message will follow the path through the network with the lowest hop
number� as determined by application of Dijkstra�s algorithm� In this setup� the �rst message sent
will have a time proportional to the number of network links traversed� and that number will be
the fastest possible path� The last message in a time step� conversely� may follow an unpredictable
path and have a signi�cantly higher time to completion�

A paper on this work� �Recursive Simulation for High
Level Performance Estimation of Massive
Systems�� was submitted to IPDPS ���� and ICS��� This paper details the �recursive� method of
high
level simulation for Massively Parallel systems�

The source code for the simulator� and both of the papers� are in Sections � and � of this binder�
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��� Final Stressmark Performance Improvements Report

In June ���� we submitted a report of our results to Joe Musmanno� the stressmark suite lead
designer for the Data Intensive Systems program�� The report is in Section � of this binder�
Signi�cant contributions include the Unidirectional Space Time Representation USTR� and a
novel recursive implementation of the Floyd
Warshall algorithm� We found the keys to improve the
performance of the memory system are as follows� increase data reuse� decrease cache con�icts� and
decrease cache pollution� The techniques that we use to achieve these ends can be categorized as
data layout optimizations and data access pattern optimizations� Some of the highlights of our work
include tiling layouts that provide up to ��x improvement for the Floyd
Warshall algorithm� and
the USTR that reduces level
� cache misses by up to ��x based on the Pentium III architecture��

We submitted stressmark results for several novel optimizations of the Floyd
Warshall algorithm
and Dijkstra�s algorithm�

Floyd
Warshall Baseline Approach
Floyd
Warshall Tiling and Copying
Floyd
Warshall Tiling and the Block Data Layout
Floyd
Warshall Simple USTR
Floyd
Warshall Optimized USTR
Floyd
Warshall Recursive USTR
Dijkstra�s Baseline Approach
Dijkstra�s Cache
friendly Implementations

Each of the previous stressmarks were run on the following architectures�

Alpha ����� uniprocessor ���MHz with ���MB main memory� ��K L� data cache� �MB L�
MIPS R����� �� processor ���MHz with ��GB shared memory� ��K L�� 	 MB L�
Pentium III � processor ���MHz with ��K L�� �MB L�
UltraSPARC III � processor ��� MHz SUN Blade ���� with �GB shared memory� ��K L�� 	MB L�
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907,142,1662,760,091,657
Data level-2

cache misses

2,410,185,6636,199,690,069
Data level-1

cache misses

N3N*(N+E)*lg(N)Processor-Memory traffic

N3N*(N+E)*lg(N)Computational Complexity

Cache FriendlyEfficient
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N3N*(N+E)*lg(N)Processor-Memory traffic

N3N*(N+E)*lg(N)Computational Complexity

Cache FriendlyEfficient

Figure ��� Dijkstra�s Algorithm Comparison� Theoretical bounds and SimpleScalar results based
on Pentium III architecture� We observed signi�cant improvements for dense graphs with density
���

�The stressmark suite was developed by the Atlantic Aerospace Electronics Corporation� in conjunction with The
Boeing Company and ERIM International� Inc� The suite is available at http���www�aaec�com�projectweb�dis�
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Figure ��� Summary of Floyd
Warshall Results� Theoretical bounds and SimpleScalar results based
on Pentium III architecture

In addition to the stressmark results we also presented a simulation tool for the high
level
parameterized performance estimation of PIM architectures� Some of the results of our experiments
on the tool for various architectures were included� The simulator currently has models of the
Berkeley VIRAM and the ISI DIVA architectures� and can evaluate performance for the following
applications�

BiConjugate Gradient
�
D FFT
�
D FFT
Corner Turn
Matrix Multiply
Transitive Closure

We also provided input to Joe Musmanno regarding the evaluation of the stressmark results�
The stressmark results submitted are in Section � of this document�

� Lessons Learned

The speed of modern processors is increasing at a rate of roughly ��� per year while the speed of
memory is increasing at a rate of roughly �� per year� This di�erence is often referred to as the
processor
memory gap� and it causes the latency to memory as seen by the processor to increase
signi�cantly with each passing year� In order to hide this increasing latency� caches have been
designed to take advantage of locality of reference� the fact that once an element is accessed there
is a good chance that it and�or elements near will be accessed in the near future� The cache is
much smaller than main memory and is placed much closer to the processor in terms of latency�

Modern processors are including more levels of cache� each level larger in size and farther from
the processor in terms of latency� Invariably the processor will access data that is not in the
cache and this will result in a cache miss� Cache misses can be categorized into one of three
categories� cold misses� capacity misses� and con�ict misses� A cold miss occurs the �rst time a
data element is accessed� These misses are unavoidable� A capacity miss occurs if the working
set of the application is larger than the cache� These misses can be avoided by either decreasing
the working set or increasing the size of the cache� A con�ict miss occurs if two or more data
elements in the working set map to same place in the cache and the replacement of one results in a
subsequent cache miss when that element is accessed� This type of miss can be avoided in a number

��
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of ways including improved data access patterns� improved data layout� reducing the working set�
etc�

Two other issues that should be addressed are cache pollution and TLB misses� TLB misses are
similar to cache misses except that they refer to misses in the Translation Look
aside Bu�er� They
can be categorized the same as cache misses and reducing them follows a similar pattern� Cache
pollution is a somewhat di�erent issue� This refers to when a cache line is brought into the cache
and only a small portion of it is used before it is pushed out of the cache� A large amount of cache
pollution will increase the bandwidth requirement of the application� even though the application
is not utilizing more data�

Based on this discussion� the keys to improve the performance of the memory system are as
follows� increase data reuse� decrease cache con�icts� and decrease cache pollution� The techniques
that we use to achieve these ends can be categorized as data layout optimizations and data access
pattern optimizations� In our data layout optimizations we attempt to match the data layout
to an existing data access pattern� For example� we use the Block Data Layout to match the
access pattern of a tiled algorithm� In our data access pattern optimizations� we design both
novel and trivial optimizations to the algorithm to improve the data access pattern� For example�
we implemented both a tiled implementation and a novel recursive implementation of the Floyd

Warshall algorithm to improve the data access pattern� The techniques that we use are algorithmic
in nature� meaning that we assume no control of the hardware or the operating system�

In Dijkstra�s algorithm and Prim�s algorithm� the largest data structure is the graph representa

tion� An optimal representation� with respect to space� would be the adjacency
list representation�
However� this involves pointer chasing when traversing the list� The priority queue has been highly
optimized by various groups over the years� Unfortunately� the update operation is often excluded�
as it is not necessary in such algorithms as sorting� The asymptotically optimal implementation
that considers the update operation is the Fibonacci heap� Unfortunately this implementation
includes large constant factors and did not perform well in our experiments�

Access to source code is obviously required for our optimizations� Changes to the source code are
fairly minor and are most often isolated to the inner loop or to the loop structure of the transitive
closure kernel� In some cases� such as when using the Block Data Layout or in the optimization to
Dijkstra�s algorithm� it may be necessary to change the data structure or data layout for the kernel�
We achieved this by allocating additional space and copying the data into the correct format� Upon
completion the result was copied back to the original format� Since transitive closure is an ON��
complexity algorithm� copying ON�� data required a very small amount of time relative to the
total running time� For any optimization that requires copying� the running time given includes
the time for copying� Possibly the most di�cult task is choosing the appropriate block size for the
tiled implementations� This was done experimentally on one problem size on each machine and
the block size found was used for all problem size� ATLAS provides a technique for automatically
performing this experimentation at compile time� and a similar approach could be developed for
these implementations�

� Technology Transition

��� Impulse project �Univ� of Utah�

We have interacted with the Impulse project with the eventual purpose of integrating our static�dynamic
data layout techniques into the compiler framework being built for Impulse� The Impulse archi

tecture currently supports only a few remapping functions that can be e�ciently implemented in

�	
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a simple ALU� We have proposed new remapping functions for various applications that can also
be implemented in Impulse�

��� SLIIC and DIVA projects �USC	ISI�

We have interacted with the SLIIC project with a view to collaborate in building their PIM sim

ulator� Our interaction with the DIVA ��� �� project at USC�ISI was ideally to obtain their PIM
simulator for DIVA� We hoped also to gain an understanding of the issues that the DIVA team
faces in their design� so that support can be incorporated into the structure of our parameterized
PIM performance estimation tool� At the conclusion of our project� our high
level simulation was
e�cient and accurate� and the source has been released to the public domain�

��� ATLAS project interactions

ATLAS stands for Automatically Tuned Linear Algebra Software� ATLAS�s purpose is to provide
portably optimal linear algebra software� For all supported operations� ATLAS achieves perfor

mance on par with machine
speci�c tuned libraries ��	��

We have studied block data layout as a data transformation technique used in conjunction with
tiling to improve cache performance� In most cases� datalayout in ATLAS goes along the following
way� After initialization� both matrix A and B are in column major� Before the computation
begins� they copy matrix A into a temporary bu�er pA and the data in pA are in block data layout�
All the following computations use data in pA and the data layout of pA is never changed again�
For each column panel of matrix B� ATLAS copies the data into a temporary bu�er� pB� Data in
pB are in block data layout now�� Then matrix A is multiplied with this column panel� After the
multiply� data in this column panel won�t be needed again� Then ATLAS re�lls the bu�er pB with
the next column panel of B and goes on with the computation� Eventually both matrix A and B

will be completely changed into block data layout�
We have provided a theoretical analysis for the TLB and cache performance of block data layout�

Based on this analysis� we proposed an approach for block size selection that provides a tight range
for optimal block size in using block data layout for dense linear algebra implementations on cache
based machines� The key results of our work are as follows�

The optimal block size Btc� that minimizes the miss cost caused by L� cache and TLB misses
is given as

Btc� �

vuut�L�cMtlb

Pv
! �� !

�Lc���L�

c�

Sc�
�H��Sc�

�H�
��

where Hi is the cost of a hit in the ith level cache� Mtlb is the penalty of a TLB miss� Sci is the
size of the ith level cache� Lci is the line size of the ith level cache� and Pv is the virtual page size�

The optimal block size for minimizing the total miss cost for all cache levels is given by

Btc� � Bopt �
p
Sc� ��

This interval shown in Figure �� can e�ectively reduce the range of block sizes searched by the
ATLAS optimization routines� greatly speeding up ATLAS optimization�

��
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Abstract: In this paper, we demonstrate the effectiveness of application directed explicit cache 
management. We define the generalized split temporal/spatial cache architecture as an 
abstraction of several advanced cache architectures. We analyze individual problems, identify 
the inefficiencies in the memory hierarchy and develop explicit cache management algorithms. 
In our algorithms, the application software controls hardware mechanisms directly. To 
illustrate various optimizations, problems are chosen from regular, sparse, data structure and 
graph applications. Analytical performance estimations are derived for several problems. 
Simulations show reduced memory traffic and improved average memory access time. For 
example, in the sparse matrix vector multiplication problem, the average memory access time 
can be reduced by 21% to 62% over a broad range of cache configurations. 

 
 
1. Introduction 
 
Memory system performance is a key limiting factor in today’s computer systems. Traditional cache replacement 
policies are often inefficient for modern application software. On the temporal side, data is not always placed in 
cache according to its temporal locality. In many applications, large data structures with low temporal reuse 
compete for cache space, although small data structures with high temporal reuse are desirable. Hardware 
[1][2][3][5][7][8] and compiler [4][6] based approaches have been proposed. This paper addresses inefficiencies 
directly from application software. On the spatial side, traditional architectures have difficulty dealing with data 
references of different spatial localities at the same time. Explicit management can solve this problem by 
separating data references into different caches. 
 
When the performance of hardware is pushed to the limit, some burden is shifted to the software. EPIC 
architectures follow this path. Software based approaches can be further divided into two layers: compiler and 
application. Now compilers [4][6] are picking up the burden from hardware. However, compilers also have their 
limitations. This motivates us to go one step further to explore the application directed approach. 
 
The idea of explicit cache management as an architectural feature can be found in several modern processors: 
The cache in the Itanium architecture [11] is divided into a “temporal structure” and a “spatial structure”  at each 
level. A bit field in each load/store/prefetch instruction specifies which structure to use. Intel XScale [12] has a 
16K “Data Cache” and a 2K “Mini-Data Cache”. A bit field in page table controls which cache to use. Intel 
StrongARM also has a similar design. UltraSPARC III Cu [13] has a 2K prefetch cache in addition to the regular 
cache. A prefetch instruction can fetch data into one or both of them. HPL/PD [14], which is a reference 
architecture and simulated by Trimaran/IMPACT [15] compiler infrastructure, has L1, L2 cache and a prefetch 
cache. It also uses a bit field in load/store instructions to control which cache to use. Similar architectures can 
also be found in several papers, such as Split Temporal/Spatial Cache [1] and Dual Data Cache [6].  
 
In these architectures, software can control hardware mechanisms of memory hierarchy directly. We call this 
explicit cache management. The name is used to distinguish from hardware only approaches, which are 
automatic (implicit). We define an abstract architecture, generalized split temporal/spatial cache architecture, to 
support explicit cache management algorithms in this paper. The idea of explicit cache management, however, is 
not limited to this type of architectures.  
 
In the rest of this paper, we first define the generalized split temporal/spatial cache architecture in Section 2. 
Then we analyze individual problems, identify the inefficiencies and develop explicit management algorithms in 
Section 3. In our algorithms, application software controls hardware mechanisms directly. Simulation results and 
analysis are given in Section 4. More architectural issues are discussed in Section 5. 
 

 

 

  *  Supported by the US DARPA Data Intensive System Program under contract F33615-99-1-1483 monitored by Wright 
Patterson Airforce Base and in part by an equipment grant from Intel Corporation. 
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2. The Generalized Split Temporal/Spatial Cache Architecture 
 
Our work is applicable to the architectures stated earlier in the introduction section. However, as they are not 
general-purpose, it is difficult to use them directly in an application directed approach. Architectures of real 
processors are often not formally defined. Architectures in literature are often specialized for a hardware 
approach. As we would like to make our explicit management algorithms applicable to a family of architectures 
and independent of specific architectural features, we define an abstract but realistic architecture: the generalized 
split temporal/spatial cache architecture (Figure 1). It is simple, free from implementation details and can cover 
many specific architectures.  
 

Temporal
Cache

Processor

Spatial
Caches
Spatial
Caches

Memory Control Mechanism

 

Figure 1: Generalized split temporal/spatial cache architecture model 

Architecture Model: This architecture consists of one temporal cache and one or more spatial caches for data 
references. The function of the temporal cache is similar to that of a “regular” cache. It stores data with good 
temporal locality. The function of spatial caches is similar to prefetch or stream buffers. They are much smaller 
than the temporal cache and are used to handle data with poor temporal locality. They can have built-in prefetch 
mechanisms, which will be discussed in our algorithms.  
 
In our architecture model, the temporal cache is large and simple; spatial caches are small but equipped with 
advanced prefetch mechanisms. A simple design of the temporal cache will make efficient use of physical 
resources for capacity and speed. On the other side, keeping spatial caches small would limit the side effects of 
complex designs. 
 
Cache Management: A control mechanism is needed to determine which cache to use on each load/store 
operation. It can be either hardware controlled or software controlled. In this paper, software control is used, and 
we call this target cache control. For simplicity, we assume that data can be loaded into only one of the caches on 
a data reference, and a cache hit occurs only in the specified cache. We also assume write back with write 
allocation policy on all caches, and there is coherence protocol like in multi-processor systems. 
 
 

3. Application Directed Explicit Management  
 
3.1 Objectives of Our Optimization 
 
Given the ability to control the generalized split temporal/spatial cache architecture, our application directed 
explicit management have three objectives: 
 
A. Tuning data placement in temporal cache toward optimal replacement: In the application directed 
approach, an algorithm designer can predict the future. This prediction can be combined with a history based 
replacement policy. Specifically, like optimal replacement policy, if the predicted reuse distance is too large or 
there is no reuse at all, we can divert the data reference to a spatial cache. The predictions do not need to be 
precise or complete. Any imperfections can still be covered by traditional replacement policy in temporal cache. 
[3] gives an upper bound on hit ratio, which would be applicable here, although there are many differences. 
Better data placement will translate into reduced memory traffic. This can be measured by the miss rate defined 
in Section 3.2. 
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B. Organizing spatial locality for prefetch: The explicit management not only improves data placement in the 
temporal cache, but also creates opportunities for optimizations on spatial locality. As temporal locality and 
spatial locality are often associated, separating data references according to their temporal locality will often 
make the spatial locality in each cache more uniform. If multiple spatial caches are available, we can further 
group data references into different spatial caches according to spatial locality. Uniform spatial locality will help 
spatial locality based optimizations, such as aggressive prefetch.  
  
C. Overlapping the operations of different caches: Different caches in a split cache architecture can work in 
parallel explicitly. We can improve the performance by restructuring programs to maximize the overlapping 
between cache operations. 
 
3.2 Performance Metrics 
 
The performance improvement from split cache architectures cannot be evaluated by miss rate directly, as there 
are multiple caches with different configurations. We use average memory access time and characteristic miss 
rate to measure performance improvements. 
 
3.2.1 Average Memory Access Time 
 
The average memory access time is highly architecture dependent. In our simulation, it is based on a 
representative cache and memory system assumption: A one-level cache connected to main memory via a 64-bit 
bus. We assume SDRAM with a 5-1-1-1 access cycle is used. On a cache line (block) fetch, the first 8 bytes take 
5 memory cycles to complete, and the rest of the data transfers take 1 memory cycle for every 8 bytes. This 
results in a timing model, as shown in Table 1. We also assume the cost of a cache hit is 0.2 memory cycles. 
  

Line Size Miss Penalty 
16 bytes 6 memory cycles 
32 bytes 8 memory cycles 
64 bytes 12 memory cycles 

128 bytes 20 memory cycles 

Table 1: Relation between cache line size and cache miss penalty 

The purpose of using average memory access time is to evaluate the effects of our spatial locality optimizations, 
where we use spatial caches with different line sizes. The performance numbers will be different on other 
systems, but our optimizations will be effective as long as cache miss penalty increases with line size. 
 
3.2.2 Characteristic Miss Rate 
 
We define the characteristics miss rate as a timing model independent performance metric. It is measured on a 
reference split cache architecture, in which the cache line size of all caches are the same. This makes the cache 
miss penalty comparable. No prefetch techniques are applied. The size of all spatial caches is one cache line, 
thus the performance improvement from temporal reuse in spatial caches is not included. Cache misses from all 
caches are counted. The characteristic miss rate is defined as: 
 
 characteristic_miss_rate = sum_of_all_cache_misses / total_number_of_accesses 
 
The main purpose of this definition is to make the meaning of the characteristic miss rate similar to the meaning 
of the miss rate on a traditional architecture. As prefetch techniques are excluded, it is a measure of the 
effectiveness of data placement in the temporal cache, closely related to memory traffic. It can be used in two 
ways: compare the performance of an application with or without explicit management, or compare the 
performance between a split cache architecture and a traditional architecture. Another advantage of this metric is 
that it can often be derived from an algorithm analytically.  
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3.3 Explicit Cache Management Algorithms for Selected Problems 
 
3.3.1 Circular Data Block Access – An Illustrative Example 
 
This problem is an abstraction of a simple but common access pattern. A data block is brought into a processor 
sequentially several times during the execution of an algorithm. 
 

 

Not in Cache In Cache 

Point  of Access Data is replaced out of  cache 
before reuse 

 

Figure 2: Circular data block access on traditional architecture 

 
If the data block is larger than the cache, only recently accessed data is available in cache. Figure 2 shows the 
situation on a direct mapped cache or a fully associative cache with LRU replacement policy. The performance 
is poor in this scenario. There is zero temporal reuse exploited, as data is replaced out of cache before it is 
accessed again. Even if the data block is just slightly larger than the cache, all temporal reuse is gone. The cache 
behaves like a FIFO buffer. The situation is more complex for caches with limited associativity or random 
replacement policy, but the reuse will still decrease quickly as the data block size exceeds the cache size. This 
situation can be improved by the following target cache control (Figure 3): 
 

• Temporal Cache <= A region in the data block* 
• Spatial Cache <= Rest of the data block 
 
* size_of_the_region = size_ of_ the_temporal_cache  

 
The symbol “<=” is used to indicate that the cache on the left side will handle the data on the right side.  
 

 

To Spatial Cache 

Point of Access 

To Temporal Cache 

In Temporal Cache From Memory  

Figure 3: Circular data block access with explicit management 

 
With explicit management, all data in the temporal cache will be reused. The rest of the data block will be loaded 
from memory each time. After the first iteration, characteristic miss rate (as well as the memory traffic) can be 
reduced by: 
 
 cache_size/data_size (cache_size<data_size) 

 
data_size is the size of the data block. 
 

For example, when the data block is just a little larger than cache, memory traffic can be reduced by nearly 
100%; when the data block is 5 times as large as cache, the memory traffic can be reduced by 20%. 
 
The data placement produced by the above explicit management is equivalent to the data placement produced by 
the optimal (MIN) replacement policy. This placement can also be considered as a global resource allocation. It 
is interesting to notice that all the data have exactly the same access pattern, but we treat them differently to 
improve performance. This type of problems would be difficult to handle by access history based hardware 
approaches.  
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Performance can be further improved by interleaving the operation of the temporal cache and the spatial cache, 
as shown in Figure 4. Some latency will be hidden if the two caches can work concurrently. 
 

 

To Temporal Cache 

To Spatial Cache 

 

Figure 4: Interleaving the operations of temporal cache and spatial cache 

 
3.3.2 Sparse Matrix Vector Multiplication 
 
The sparse matrix vector multiplication problem is a widely used numerical kernel. It is included in many 
benchmark suites for high-end systems, as its performance is a key indication of a system’s ability to handle 
irregular numerical problems.  
 
Optimization A 
 
The access patterns of the matrix and the vector are quite different. For the matrix, if the multiplication is 
performed just once, there is no temporal reuse. The spatial locality is usually good, depending on the data 
structure used. For the vector, the temporal locality is good, but the spatial locality is usually poor. A cache miss 
is more costly for a vector reference because of the poor spatial locality. Thus, the vector should have priority for 
cache space. However, in traditional architectures, matrix references will compete with vector references and 
evict vector data out of cache, due to its larger size. We can also consider this situation as cache pollution. 
Performance can be improved by the following target cache control: 
 

• Temporal Cache <= Vector 
• Spatial Cache <= Matrix 

 
If the vector is smaller than the cache, the cache miss rates have a simple analytical form. The vector will be 
effectively locked in the temporal cache. All cache misses are compulsory. We can choose the data structure for 
the matrix such that the accesses are sequential to maximize spatial locality. Suppose there are two variables for 
each matrix element (index and data), two variables for each row of the matrix (row index and the number of 
nonzero elements in the row) and each data element is 4 bytes. We can calculate the characteristic miss rate as 
follows: 
 

spatial_misses = matrix_size / line_size = (F*2+N*2)*4/line_size 
temporal_misses = vector_size /line_size = N*4/line_size 

characteristic_miss_rate = 
)23(_

)32(4
NFsizeline

NF

+⋅
+  

vector_size: The size of the vector data in bytes 
matrix_size: The size of the matrix data in bytes 
line_size: The cache line size in bytes 
spatial_misses, temporal_misses: The number of misses in each cache 
N: The dimension of the matrix (square matrix) 
F: The number of nonzero  elements in the matrix 

 
The spatial locality of the matrix reference can be exploited to further improve performance. We can sequentially 
prefetch the matrix data into the spatial cache. The performance is limited only by memory bandwidth.  
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Optimization B (Vector smaller than Cache) 
 
In problems such as finding the solutions of linear systems, the multiplication will be repeated many times with 
the same matrix. There is also temporal reuse for the matrix data, although the reuse frequency is still lower than 
that of the vector. If we consider the references to the matrix data separately, it leads to a “Circular Data Block 
Access” problem, which is discussed in Section 3.3.1. If the temporal cache is larger than the vector, we can 
incorporate the algorithm of that problem into optimization A. The revised target cache control is:  
 

• Temporal Cache 
<= Vector 
<= A region in the Matrix* 

• Spatial Cache <= Rest of the Matrix 
 

*  size_of_the_region =  size_of_the_temporal_cache – size_of_the_vector  
 
Optimization C (Vector larger than cache) 
 
When the vector is larger than the cache, it cannot be cached efficiently, even if we direct the matrix data to the 
spatial cache. Most of the memory access time can be attributed to the cache misses for the vector. Although it is 
difficult to further reduce the number of cache misses, we can reduce the cache miss penalty. As there is little 
chance for spatial reuse, we can use a small data transfer unit between the cache and the memory to lower the 
cache miss penalty of vector references, by the following target cache control: 
 

• Temporal Cache <= A region in the Vector* 
• Spatial Cache A <= Rest of the Vector 
• Spatial Cache B <= Matrix 
 
*  size_of_the_region = size_of_the_temporal_cache  

 
Spatial cache A has a small data transfer unit, this can be accomplished by using a small line size or partial line 
fill. Spatial cache B has a large line size or prefetch mechanism to exploit the spatial locality of the matrix, as 
described in optimization A. The temporal cache is still used to store part of the vector data.  
 
3.3.3 Random Tree Search 
 
 
 

 Place in 
Temporal Cache 

The path of 
access 

Imagine the “ shape”  
 of a tree 

 

Figure 5: Binary tree search 

We use the random tree search problem as an example of data structure applications. A search operation on a 
tree results in a series of data accesses, one access at each level. The access frequency of the nodes in the tree is 
not uniform. Nodes closer to the root are much more frequently accessed, due to the exponential growth of the 
number of nodes at each level (Figure 5). Thus, nodes closer to the root should have priority for cache space. 
However, in traditional cache architectures, lower level nodes will compete with higher level nodes for cache 
space. We use the following target cache control to improve data placement: 
 

• Temporal Cache <= Top Tree Nodes, up to the capacity of the Temporal Cache* 
• Spatial Cache <= Rest of the Tree Nodes 
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*Select tree nodes level-by-level from the root, until the cache capacity is reached. The last level may not be 
fully directed to the temporal cache. 

 
After enough search operations have been performed, the memory system will reach a stable state. All accesses 
to the nodes in the temporal cache will be cache hits. All cache misses will come from the accesses to the nodes 
directed to the spatial cache. This is a better data placement, as we will show in the simulation section. 
 
We make the following approximations to calculate the analytical estimation of characteristic miss rate: The 
temporal cache only holds complete tree levels. An access to a node in the temporal cache will cause two cache 
hits, assuming there are one access to the key and one access to one of the pointers. An access to the spatial 
cache will cause one cache miss and one cache hit, assuming the first access will cause a cache miss and the 
second access will cause a hit due to spatial locality. The derivation is skipped here and the stable state 
characteristic miss rate is given below: 
 

characteristic_miss_rate = 
))1(21(2

)1(22
−+

−−+
L

cL
L

Lc

 
c = 

� �
)_/_(log2 sizenodesizetemporal  (The number of levels that can fit in temporal cache.) 

L: The number of levels of the tree 
 
The data layout of this problem also needs to be adjusted for efficient target cache control. The nodes directed to 
the temporal cache and the nodes directed to the spatial cache should be stored in different areas. 
 
3.3.4 Structure and Payload Problems 
 

 

Payload 

Structure Structure Temporal Cache 

Spatial Cache 

 

Figure 6: Structure and payload problems 

 
In pointer based data structures, data can often be classified into two categories: structure data and payload. 
Pointers, indexes and keys can be considered as structure data, and the attached data can be considered as 
payload. (Figure 6) Structure data is essential for the operation of a data structure, while payload is the data 
manipulated by the data structure. 
 
Structure data tends to be small, has good temporal locality and poor spatial locality. Payload tends to be large, 
has good spatial locality and poor temporal locality. For example, suppose the above Random Tree Search 
problem appears during the queries of an image database. In this case, an image is attached to each tree node. 
The difference between the tree structure and the image data is obvious. Therefore, structure data should have 
priority for cache space. In general, we can use the following target cache control for this kind of problems: 
 

• Temporal Cache <= Structure 
• Spatial Cache <= Payload 

 
Special data layouts are also needed for this optimization. The structure data and payload data should be stored 
separately. As the payload usually has good spatial locality, we can use prefetch to further improve performance. 
 
3.3.5 Dijkstra’s Shortest-Path Algorithm  
 
Dijkstra’s shortest-path algorithm is an effective graph algorithm. It is often used in network routing, CAD and 
many other science and engineering applications. It is also a test the MiBench [18] benchmark suite. Usually two 
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major data structures are used in this algorithm, the graph data and the priority queue. The graph data stores 
information about graph edges and their costs. The priority queue is used to extract the lowest-cost node 
efficiently. 
 
For the graph data, if we run the algorithm from a single source, there is no temporal reuse. There is some spatial 
locality, however, as all the edges going out from a node will be accessed consecutively during a relax operation. 
For the priority queue, there is temporal reuse, but the spatial locality is poor. Therefore, we can use the temporal 
cache to store the priority queue and divert the graph data to the spatial cache: 
 

• Temporal Cache <= Priority queue 
• Spatial Cache <= Graph data 

 
This problem is a good example of straightforward explicit management optimizations for relatively complex 
problems. There are many opportunities for the optimizations of the priority queue, which are left for future 
study. 
 
 

4. Simulation Results 
 
4.1 Simulator 
 
We developed a trace simulator to simulate the generalized split cache architecture. The simulated architecture 
consists of one temporal cache and multiple spatial caches. The cache size, line size, replacement policy and 
associativity of all caches can be configured to simulate various architectures. For simplicity, there is no prefetch 
mechanism included in the simulator. We use spatial caches with different line sizes to exploit spatial locality. 
Both miss rate and average memory access time are measured by this simulator. The timing model described in 
Section 3.2 is used to calculate the total memory cycles. The average memory access time is the total number of 
memory cycles divided by the number of references. 
 
The trace is generated by inserting patches into program source code directly. To include explicit management 
information, an integer pair is generated for each memory access. One integer indicates the address. The other 
integer indicates which cache to use and if the access is a read or a write. This resembles the instruction 
embedded method (see Section 5). 
 
4.2 Results 
 
4.2.1 Sparse Matrix Vector Multiplication 
 
Figure 7 shows the characteristic miss rate (defined in Section 3.2). The Optimization A in Section 3.3.2 is used. 
The sparse matrix is generated by inserting nonzero elements randomly. Its data structure groups the index and 
the data element together, so the access to the matrix is sequential.  
 
We can see the performance improvement is connected to the relative size of the vector and the temporal cache. 
Maximum characteristic miss rate reduction is 52% for both N=4000 and N=8000. Each data element is 4 bytes 
in this simulation, thus maximum reductions occur when the size of the vector is close to the size of the temporal 
cache. For other cache sizes, there are noticeable improvements when the size of the temporal cache falls 
between 1/4 to 2 times of the size of the vector. Other simulations results show the number of nonzero data 
elements in the matrix does not have a significant influence. 
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N: Dimension of matrix (square matrix) 
Nonzero data elements in matrix: 160,000 
Spatial Cache: 32-byte cache line, the cache size is 1 line 
Temporal Cache: 32-byte cache line, 4-way associative, LRU replacement policy 

Figure 7:  Characteristic miss rate of sparse matrix vector multiplication 

Figure 8 and Figure 9 show the average memory access time of this problem. Figure 8 focuses on the relation 
between performance and cache size. Figure 9 focuses on the relation between performance and line size. The 
optimization C in Section 3.3.2 is used in this simulation. There are now two spatial caches, one for the vector 
and the other for the matrix. Different line sizes are used to exploit spatial locality. We can see the performance 
is further improved. This improvement is also observed over a broader range of cache sizes than the 
improvement in Figure 7. 
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Figure 8: Average memory access time of sparse matrix vector multiplication 
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Figure 9: Average memory access time of sparse matrix vector multiplication 
 

The performance improvement in Figure 8 and Figure 9 comes from three different sources. The contribution of 
each source is determined by the relative size of the vector and the temporal cache. This is explained in Table 2. 
 

A. Better data placement in temporal cache. Memory traffic is also reduced. 
B. Reduced cache miss penalty of vector references by using a small line size on the spatial cache A. Memory 

traffic is also reduced.  
C. Improved memory bandwidth of matrix references by using a large line size on the spatial cache B. 
 

Performance Contributors Relative Size 
A B C 

Comments 

Cache << Vector Some Main Some Cache misses from vector references dominate memory access 
time. 

 
Cache ~ Vector 

 
Main 

 
Some 

 
Some 

Explicit management works efficiently on data placement, with 
explicit management, vector is locked into cache, without explicit 
management, there is severe pollution from matrix data.  

 
Cache >> Vector 

 
Little 

 
None 

 
Main 

There is enough space for both vector and matrix. Data 
placement does not have a significant influence. B is not 
applicable, as the whole vector can be locked in temporal cache. 

Table 2: Analysis of different sources of performance improvement 

 
4.2.2 Binary Tree Search 
 
Figure 10 shows the characteristic miss rate for the binary tree search problem related to the size of the temporal 
cache, including the simulation result and the analytical performance estimation described in Section 3.3.3. For 
the simulation result, we can see there are similar reductions across a wide range of temporal cache sizes. When 
the cache is larger than the tree (The tree is 192K bytes), there is no improvement, as the complete tree can fit 
into the temporal cache. For the analytical performance estimation, we can see it matches the simulation result. 
The difference is caused by approximations introduced during the derivation. 
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Figure 10:  Characteristic miss rate of binary tree search 

 
 

Figure 11 shows the average access time for the problem. The line size of the spatial cache is now set to 16 bytes 
to reduce cache miss penalty. The performance is further improved when the temporal cache has a medium to 
large line size. 
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Figure 11: Average memory access time of binary tree search 
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4.2.3 Dijkstra’s Algorithm 
 
Figure 12 shows the characteristic miss rate for the problem. We can see the effect of explicit management on 
this problem is similar to the sparse matrix vector multiplication problem. The peak miss rate reduction is 42%. 
This occurs when the size of the temporal cache is 32K. This result also suggests that a smaller cache with 
explicit management can behave like a larger cache without explicit management. 
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Figure 12:  Character istic miss rate of Dijkstra’s algor ithm 

 

5. Discussion 
 
The explicit cache management is a rather new and broad area. We focused on explicit management algorithms 
in previous sections. In this section, we will briefly address some architectural issues. 

 
Multilevel Cache: The Generalized Split Cache Architecture we defined before can be extended to multilevel 
cache architectures. There are two available methods:  
 
We can simply replace the single level temporal cache with a multilevel traditional cache. This is the scheme 
used by HPL-PD [14]. The algorithms for single level cache can be used directly. 
 
The split cache can also be built at each level recursively. This is the scheme used by Itanium [11]. We can get 
better performance by applying different optimizations at different levels. For example, for the sparse matrix 
vector multiplication problem, we can use L1 cache for vector data only and L2 cache for both vector and matrix 
data (see Section 3.3.2).  

 
Implementation of Target Cache Control: In split cache architectures, on a data reference, software needs to 
pass some extra information to hardware to indicate which cache to use. There are two available 
implementations: 
 
Instruction Embedded Method: We can add a bit field to each load/store instruction. Both Itanium [11] and 
HPL-PD [14] use this method. It is inherently a compile time solution, as compiler will generate all the machine 
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code. It is not very flexible for run-time adaptations, as “if” may be need. The amount of embedded information 
is limited. 

 
Page Table Embedded Method: The page table is another good place to embed control information. This 
method is used by Intel XScale [12]. It is inherently a run time operating system solution, as the OS is in charge 
of the page table. Although it may not be as convenient as the Instruction Embedded Method, there are several 
advantages: A large amount of information can be included in the page table, which is based on main memory 
and cached by TLB. We may need a large space for prefetch information. The instruction set architecture is not 
affected by this method, so it can be easily incorporated into existing architectures. Run-time adaptations can 
also be more efficient.  

 
Cache Line Size in Split Cache Architectures: There are at least two reasons for organizing cache memory 
into cache lines. One is efficiency: The amount of tag memory and parallel search circuit is proportional to the 
number of cache lines, the larger cache line, the lower hardware cost. The other benefit is prefetch. Cache line 
fetch can be considered as an implicit prefetch, which can hide memory latency and increase memory throughput. 
The cache line size is always a tradeoff. Although a cache with flexible line size can improve performance, this 
may not be very practical, as the hardware complexity would be high, and proportional to the smallest possible 
line size. 
 
The situation is much better in split cache architectures, as duties are distributed into temporal and spatial caches. 
We suggest a relatively large fixed line size for the temporal cache for efficiency. Data with poor spatial locality 
can be handled by spatial caches. A possible design is to employ multiple spatial caches with different (and fixed) 
line sizes. This way, no special cache design is needed. In the sparse matrix vector multiplication problem, this 
can provide very good performance. 

 
Resolving Cache Conflict: The explicit management on split cache architectures can also be used to resolve 
cache conflict. We can simply leave only one of the conflicting references to the temporal cache and divert all 
other references to spatial caches. The advantage is that data layout and program structure do not need to be 
changed. 
 
Better Performance Prediction: In our problems, we found it is much easier to estimate performance after the 
explicit management is applied. The characteristic miss rate of several problems can be expressed in analytical 
forms. Due to better data placement control from explicit management, we can not only improve performance, 
but also make the memory access time more predictable. This would be helpful for real time applications. 
 
Relation to Hardware and Compiler Based Approaches: Compared with hardware and compiler approaches, 
application directed approach is more precise. It also requires much less hardware support than hardware 
approaches. The advantage of hardware and compiler approaches is that they are automatic. Application directed 
approach works best for performance sensitive kernel applications. The three approaches can also be used 
together. 
 
Our approach is also a good reference for compiler and hardware optimizations, as it can reveal the mechanism 
of performance improvement. Our explicit management algorithms are directly applicable to compiler 
optimizations. They are also good references for hardware optimizations. 
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6. Related Work 
 
Architecture Definitions: Various architectures are defined in [1][4][6][7]. In these architectures, there are 
multiple caches for data with different temporal and spatial localities. Although there are many differences 
among them, the ideas are similar.  
 
Hardware Adaptive Approaches: [1][2][3][5][7][8] can be classified as hardware adaptive approaches. In most 
of these approaches, the control decision is based on access history. Static control based on profiling information 
is also used in some papers.  

 
Compiler Driven Approaches: [4][6] are compiler driven approaches, where the compiler analyzes source code 
and generates control information. They are focused on regular numerical codes. 

 
The Address Mapping Approach: [9] is a interesting approach, in which applications control the 
virtual/physical address mapping to get better data placement. 

 
Software Prefetch: Software prefetch techniques such as [16] also have some similarities to our approach, in 
that they are also combined hardware and software efforts. They are different, however, as our approach 
addresses data placement and memory traffic besides access latency.  

 
 

7. Conclusion 
 
The performance improvements in our problems are attractive. The explicit management algorithms are 
straightforward. The underlying architecture, the Generalized Split Temporal/Spatial Cache architecture, is 
realistic. All of these factors make us think our approach is an efficient next step to improve memory system 
performance. 
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Abstract. Processing-in-Memory systems that combine processing power
and system memory chips present unique algorithmic challenges in the
search for optimal system efficiency. This paper presents a tool which al-
lows algorithm designers to quickly understand the performance of their
application on a parameterized, highly configurable PIM system model.
This tool is not a cycle-accurate simulator, which can take days to run,
but a fast and flexible performance estimation tool. Some of the results
from our performance analysis of 2-D FFT and biConjugate gradient are
shown, and possible ways of using the tool to improve the effectiveness
of PIM applications and architectures are given.

1 Introduction

The von Neumann bottleneck is a central problem in computer architecture to-
day. Instructions and data must enter the processing core before execution can
proceed, but memory and data bus speeds are many times slower than the data
requirements of the processor. Processing-In-Memory (PIM) systems propose to
solve this problem by achieving tremendous memory-processor bandwidth by
combining processors and memory together on the same chip substrate. Notre
Dame, USC ISI, Berkeley, IBM, and others are developing PIM systems and
have presented papers demonstrating the performance and optimization of sev-
eral benchmarks on their architectures. While excellent for design verification,
the proprietary nature and the time required to run their simulators are the
biggest detractors of their tools for application optimization. A cycle-accurate,
architecture-specific simulator, requiring several hours to run, is not suitable for
iterative development or experiments on novel ideas. We provide a simulator
which will allow faster development cycles and a better understanding of how
an application will port to other PIM architectures [4, 7]. For more details and
further results, see [2].
1 Supported by the US DARPA Data Intensive Systems Program under contract

F33615-99-1-1483 monitored by Wright Patterson Airforce Base and in part by an
equipment grant from Intel Corporation. The PIM Simulator is available for down-
load at http://advisor.usc.edu
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2 The Simulator
The simulator is a wrapper around a set of models. It is written in Perl, because
the language’s powerful run-time interpreter allows us to easily define complex
models. The simulator is modular; external libraries, visualization routines, or
other simulators can be added as needed. The simulator is composed of various
interacting components. The most important component is the data flow model,
which keeps track of the application data as it flows through the host and the
PIM nodes. We assume a host with a separate, large memory. Note that as the
PIM nodes make up the main memory of the host system in some PIM imple-
mentations. The host can send and receive data in a unicast or multicast fashion,
either over a bus or a non-contending, high-bandwidth, switched network. The
bus is modeled as a single datapath with parameterized bus width, startup time
and per element transmission time. Transmissions over the network are assumed
to be scheduled by the application to handle potential collisions. The switched
network is also modeled with the same parameters but with collisions defined as
whenever any given node attempts to communicate with more than one other
node(or host), except where multicast is allowed. Again, the application is re-
sponsible for managing the scheduling of data transmission. Communication can
be modeled as a stream or as packets.

Computation time can be modeled at an algorithmic level, e.g. n lg(n) based
on application parameters, or in terms of basic arithmetic operations. The ac-
curacy of the computation time is dependent entirely on the application model
used. We assume that the simulator will be commonly used to model kernel
operations such as benchmarks and stressmarks, where the computation is well
understood, and can be distilled into a few expressions. This assumption allows
us to avoid the more complex issues of the PIM processor design and focus more
on the interactions of the system as a whole.

3 Performance Results

3.1 Conjugate Gradient Results

Figure 1 shows the overall speedup of the biConjugate Gradient stressmark with
respect to the number of active PIM elements. It compares results produced by
our tool using a DIVA parameterized architecture to the cycle-accurate simu-
lation results in [4]. Time is normalized to a simulator standard. The label of
our results, “Overlap 0.8”, denotes that 80% of the data transfer time is hid-
den underneath the computation time, via prefetching or other latency hiding
techniques. The concept of overlap is discussed later in this paper.

BiConjugate Gradient is a DARPA DIS stressmark [1]. It is used in matrix
arithmetic to find the solution of y = Ax, given y and A. The complex matrices
in question tend to be sparse, which makes the representation and manipulation
of data significantly different than in regular data layout of FFT. The applica-
tion model uses a compressed sparse row matrix representation of A, and load
balances based on the number of elements filling a row. This assumes that the
number of rows is significantly higher than the number of processors. All PIM
nodes are sent the vector y and can thus execute on their sparse elements inde-
pendently of the other PIM nodes.
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Fig. 1. Speedup from one processor to n proces-
sors with DIVA model

Figure 2 is a graph
of the simulator output
for a BiCG application
with parameters similar to
that of the DIVA architec-
ture with a parallel, non-
contending network model,
application parameters of
n(row/column size of the
matrix)=14000 and nz(non
zero elements)=14 elements/row.
Figure 2(left) shows the
PIM-to-PIM transfer cost,

Host-to-PIM transfer costs, computation time, and total execution time(total)
as the number of PIM nodes increases under a DIVA model. The complete sim-
ulation required 0.21 seconds of user time on a Sun Ultra250 with 1024 MB of
memory.

The graph shows that the computation time decreases linearly with the num-
ber of PIM nodes, and the data transfer time increases non-linearly. We see in
the graph that PIM-to-PIM transfer time is constant– this is because the number
of PIM nodes in the system does not dramatically affect the amount of data (a
vector of size n in each iteration) sent by the BiCG model. Host-to-PIM commu-
nication increases logarithmically with number of PIM; the model is dependent
mostly on initial setup of the matrices and final collection of the solution vectors.
The Host-to-PIM communication increases toward the end as the communica-
tions setup time for each PIM becomes non-negligible compared to the total
data transferred. Figure 2(right) shows a rescaled version of the total execution
time for the same parameters. Here, the optimal number of PIM under the BiCG
model and architectural parameters is clear– this particular application seems
suited to a machine of 64 to 128 PIM nodes most optimally in this architecture
model.
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Fig. 2. BiConjugate Gradient Results; unit-less timings for various amounts of PIM
nodes. (left: all results, right: total execution time only)

3.2 FFT

Another stressmark modeled is the 2-D FFT. Figure 3 shows execution time
versus the number of FFT points for the Berkeley VIRAM architecture, com-
paring our results against their published simulation results [8]. This simulation,
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for all points, required 0.22 seconds of user time. The 2-D FFT is composed of
a one dimensional FFT, a matrix transpose or ‘corner-turn’, and another FFT,
preceded and followed by heavy communication with the host for setup and
cleanup. Corner turn, which can be run independently of the FFT application,
is a DARPA DIS stressmark [1]. Figure 3 shows the VIRAM speedup results
against various overlap factors– a measure of how much of the data exchange
can overlap with actual operations on the data. Prefetching and prediction are
highly architecture dependent; thus the simulator provides a parameter for the
user to specify the magnitude of these effects.
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Fig. 3. Speedup versus number of FFT Points for
various fetch overlaps, normalized to 128 points.

In the graph we see that
the VIRAM results match
most closely with an over-
lap of 0.9; that is, virtually
all of the data transfer is
hidden by overlapping with
the computation time. This
‘overlap’ method is similar
to the ‘clock multiplier fac-
tor N’ used by Rsim in that
it depends on the applica-
tion and the system and
cannot to determined with-
out experimentation [5].

Inspecting the VIRAM
architecture documentation,

we see that it includes a vector pipeline explicitly to hide the DRAM latency
[6]. Thus our simulation results suggest the objective of the design has been
achieved.
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Fig. 4. 2-D FFT Results (left: Small memory size, right: Small problem size)

The simulator can be used to understand the performance of a PIM system
under varying application parameters, and the architecture’s effect on optimiz-
ing those parameters. A graph of the simulator output in Figure 4(left) and
4(right) show a generic PIM system interconnected by a single wide bus. The

WallacJR
44



FFT problem size is 220 points, and the memory size of any individual node is
256K. The change in slope in Figure 4(left) occurs because the problem fits com-
pletely within the PIM memory after the number of nodes exceeds four. Until
the problem size is below the node memory capacity, bandwidth is occupied by
swapping blocks back and forth between the node and the host memory. Looking
toward increasing numbers of PIM, we see that the total time has a minimum
at 128, and then slowly starts to increase. Thus it could be concluded that an
optimal amount of PIM nodes for an FFT of size 220 is 128.

4 Conclusions

In this paper we have presented a tool for high-level modeling of Processing-In-
Memory systems and its uses in optimization and evaluation of algorithms and
architectures. We have focused on the use of the tool for algorithm optimization,
and in the process have given validation of the simulator’s models of DIVA and
VIRAM. We have given a sketch of the hardware abstraction, and some of the
modeling choices made to provide an easier-to-use system. We have shown some
of the application space we have modeled, and presented validation for those
models against simulation data from real systems, namely DIVA from USC ISI
and VIRAM from Berkeley.

This work is part of the Algorithms for Data IntensiVe Applications on In-
telligent and Smart MemORies (ADVISOR) Project at USC [3]. In this project
we focus on developing algorithmic design techniques for mapping applications
to architectures. Through this we understand and create a framework for appli-
cation developers to exploit features of advanced architectures to achieve high
performance.
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Abstract 
Tiling has long been used to improve cache performance.  Recursion has recently been used as a 
cache-oblivious method of improving cache performance.  Both of these techniques are normally 
applied to dense linear algebra problems. We develop new implementations by means of these two 
techniques for the fundamental irregular problem of Transitive Closure, namely the Floyd-Warshall 
Algorithm, and prove their optimality with respect to processor-memory traffic.  Using these 
implementations we show up to 10x improvement in execution time.  In this context we also compare 
the performance of a nonlinear array layout with that of the block data layout.  We also address 
Dijkstra's algorithm for the single-source shortest-path problem and Prim's algorithm for Minimum 
Spanning Trees, for which neither tiling nor recursion can be directly applied.  For these algorithms, 
we demonstrate up to a 2x improvement by using a cache friendly graph representation.  We also 
demonstrate improvements in cache performance for two cache friendly implementations of the heap 
compared with the asymptotically optimal implementation, with respect to time complexity.  
Experimental results are shown for the Pentium III, UltraSPARC III, Alpha 21264, and MIPS R12000 
machines using problem sizes between 1024 and 4096 vertices.  We demonstrate improved cache 
performance using the Simplescalar simulator. 
 
1. Introduction 

 
The topic of cache performance has been well studied in recent years.  It has been clearly shown 

that the amount of processor-memory traffic is the bottleneck for achieving high performance in many 
applications [5][25].  While cache performance has been well studied, much of the focus has been on 
dense linear algebra problems, such as matrix multiplication and FFT [5][12][20][30].  All of these 
problems possess very regular access patterns that are known at compile time.  In this paper, we take a 
different approach to this topic by focusing on some fundamental irregular graph problems. 

Optimizing cache performance to achieve better overall performance is a difficult problem.  Modern 
microprocessors are including deeper and deeper memory hierarchies to hide the cost of cache misses.  
The performance of these deep memory hierarchies has been shown to differ significantly from 
predictions based on a single level of cache [25].  Different miss penalties for each level of the 
memory hierarchy as well as the TLB also play an important role in the effectiveness of cache-friendly 
optimizations.  These penalties vary among processors and cause large variations in execution time. 

The area of graph problems are fundamental in a wide variety of fields, most notably network 
routing, distributed computing, and computer aided circuit design.  Graph problems, as irregular, pose 
unique challenges to improving cache performance, challenges that often cannot be handled using 
standard cache-friendly optimizations [9].  The focus of this research is to develop methods of meeting 
these challenges. 

                                                 
* Supported by the US DARPA Data Intensive Systems Program under contract F33615-99-1-1483 monitored by Wright Patterson 
Airforce Base and in part by an equipment grant from Intel Corporation. 
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In this paper we present a number of optimizations to the Floyd-Warshall algorithm, Dijkstra’s 
algorithm, and Prim’s algorithm.  For the Floyd-Warshall algorithm we present a recursive 
implementation that achieves a 6x improvement over the baseline implementation.  We also show that 
by tuning the base case for the recursion, we can further improve performance by approximately 20%.  
We also show a novel approach to tiling for the Floyd-Warshall algorithm that achieves performance 
very close to that of the recursive implementation.  Also note that today’s state of the art research 
compilers cannot generate this implementation [9]. 

There are some natural combinations of implementation and data layout that decrease overhead 
costs, such as index computation, and yield performance advantage. In this paper, we show that our 
implementations of the Floyd-Warshall algorithm perform roughly equal with either the Morton layout 
or the Block Data Layout. 

For Dijkstra's algorithm and Prim's algorithm, to which tiling and recursion are not directly 
applicable, we present a cache-friendly graph representation.  By matching the data layout of the 
representation to the access pattern we show up to a 2x improvement in execution time.  We also 
discuss the optimization of the heap.  We discuss in detail the unique challenges posed by this dynamic 
data structure, and present two cache-friendly optimizations for the heap.  Using these optimizations 
we show significant improvements in cache performance compared with the Fibonacci heap, which 
represents the asymptotically optimal implementation of the heap for these algorithms. 

The remainder of this paper is organized as follows:  In Section 2 we give the background needed 
and briefly summarize some related work in the areas of cache optimization and compiler 
optimizations.  In Section 3 we discuss optimizing the Floyd-Warshall algorithm.  In Section 4 we 
discuss optimizing the heap data structure and Dijkstra’s algorithm.  In Section 5 we apply the heap 
optimizations to Prim’s algorithm.  In Section 6 we draw conclusions. 

 
2. Background and Related Work 

 
In this section we give the background information required in our discussion of various 

optimizations in Section 3.  In Section 2.1 we give a brief outline of the graph algorithms.  Those 
readers comfortable with the algorithms can skip this.  In Section 2.2 we discuss some of the 
challenges that are faced in making the transitive closure problem cache-friendly.  We also discuss the 
model that we use to analyze cache performance and the four architectures that we use for 
experimentation throughout the paper.  Finally, in Section 2.3 we give some information regarding 
other work in the fields of cache analysis, cache-friendly optimizations, and compiler optimizations 
and how they relate to our work. 

 
2.1. Overview of Graph Algorithms  

 
For the sake of discussion, suppose we have a directed graph G with N vertices labeled 1 to N and E  

edges.  The Floyd-Warshall algorithm is a dynamic programming algorithm, which computes a series 
of N, NxN matrices where Dk is the kth matrix and is defined as follows: Dk

(i,j) = shortest path from 
vertex i to vertex j composed of the subset of vertices labeled 1 to k.  The matrix D0 is the original 
graph G.  We can think of the algorithm as composed of N steps.  At each kth step, we compute Dk 
using the data from Dk-1 in the manner shown in Figure 1 for each (i, j)th value [7]. 

Dijkstra’s algorithm is designed to solve the single-source shortest path problem.  It does this by 
repeatedly extracting from a priority queue Q the nearest vertex u to the source, given the distances 
known thus far in the computation (Extract-Min operation).  Once this nearest vertex is selected, all 
vertices v that neighbor u are updated with a new distance from the source (Update operation).  The 
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pseudo-code for the algorithm is given in Figure 2.  The optimal implementation of Dijkstra’s 
algorithm utilizes the Fibonacci heap and has complexity O(Nlg(N) + E) [7]. 

Prim’s algorithm for Minimum Spanning Tree is very similar to Dijkstra’s algorithm for the single-
source shortest path problem.  In both cases a root node or source node is chosen and all other nodes 
reside in the priority queue.  Nodes are extracted using an Extract-min operation and all neighbors of 
the extracted vertex are updated.  The difference in Prim’s algorithm is that nodes are updated with the 
weight of the edge from the extracted node instead of the weight from the source or root node [7]. 

 
2.2. Challenges 

 
Transitive closure presents a very different set of challenges from those present in dense linear 

algebra problems such as matrix multiply and FFT.  In the Floyd-Warshall algorithm, the operations 
involved are comparison and add operations.  There are no floating-point operations as in matrix 
multiply and FFT.  We are also faced with dependencies that require us to update the entire NxN array 
Dk before moving on to the (k+1)th step (see Figure 2).  This data dependency from one kth loop to the 
next eliminates the ability of any commercial or research compiler to improve data reuse.  We have 
explored using the SUIF research compiler and found that it cannot perform the optimizations 
discussed in Section 3 without user provided knowledge of the algorithm [9].  These challenges mean 
that although the computational complexity of the Floyd-Warshall algorithm is O(N3), equivalent to 
matrix multiply, often transitive closure displays much longer running times. 

In Dijkstra’s algorithm and Prim’s algorithm, the most efficient implementation uses a Fibonacci 
heap structure for the priority queue (see Section 4.2).  This involves pointer manipulation and 
irregular accesses, which are inherently cache-unfriendly.  In fact, we can show significant 
improvements in cache miss rate by using a cache-friendly implementation of the heap instead of the 
asymptotically optimal Fibonacci heap. 

The model that we use for our research is that of a uni-processor, cache-based system.  We refer to 
the cache closest to the processor as L1 with size C1, and subsequent levels as Li with size Ci.  
Throughout this paper we refer to the amount of processor-memory traffic.  This is defined as the 
amount of traffic between the last level of the memory hierarchy that is smaller than the problem size 
and the first level of the memory hierarchy that is larger than the problem size.  In most cases we refer 
to these as cache and memory respectively (see Figure 4).  Finally, we assume an internal TLB with a 
fixed number of entries. 

We use four different architectures for our  experiments.  The Pentium III Zeon running Windows 
2000 is a 700 MHz, 4 processor shared memory machine with 4 GB of main memory.  Each processor 
has 32 KB of level-1 data cache and 1 MB of level-2 cache on-chip.  The level-1 cache is 4-way set 
associative with 32 B lines and the level-2 cache is 8-way set associative with 32 B lines.  The 
UltraSPARC III machine is a 750 MHz SUN Blade 1000 shared memory machine running Solaris 8.  
It has 2 processors and 1 GB of main memory.  Each processor has 64 KB of level-1 data cache and 8 
MB of level-2 cache.  The level-1 cache is 4-way set associative with 32 B lines and the level-2 cache 
is direct mapped with 64 B lines.  The MIPS machine is a 300 MHz R12000, 64 processor, shared 
memory machine with 16 GB of main memory.  Each processor has 32 KB of level-1 data cache and 8 
MB of level-2 cache.  The level-1 cache is 2-way set associative with 32 B lines and the level-2 cache 
is direct mapped with 64 B lines.  The Alpha 21264 is a 500 MHz uniprocessor machine with 512 MB 
of main memory.  It has 64 KB of level-1 data cache and 4 MB of level-2 cache.  The level-1 cache is 
2-way set associative with 64 B lines and the level-2 cache is direct mapped with 64 B lines.  It also 
has an 8 element fully-associative victim cache.  Unless otherwise specified the Simplescalar 
simulations are done using 16 KB of level-1 data cache and 256 KB of level-2 cache parameters. 
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2.3. Related Work 

 
A number of groups have done research in the area of cache performance analysis in recent years.  

Detailed cache models have been developed by Weikle, McKee, and Wulf in [29] and Sen and 
Chatterjee in [25].  XOR-based data layouts to eliminate cache misses have been explored by Valero 
and others in [13].  Instead of eliminating cache misses, some groups develop methods to tolerate these 
misses.  Multithreading has been discussed as one method of accomplishing this.  Kwak and others 
discuss the effects of multithreading on cache performance in [15]. 

A number of papers have discussed the optimization of specific dense linear algebra problems with 
respect to cache performance.  Whaley and others discuss optimizing the widely used Basic Linear 
Algebra Subroutines (BLAS) in [30].  Chatterjee and Sen discuss a cache efficient matrix transpose in 
[5].  Frigo and others discuss the cache performance of cache oblivious algorithms for matrix 
transpose, FFT, and sorting in [12].  Park and Prasanna discuss dynamic data remapping to improve 
cache performance for the DFT in [20].  One characteristic that all these problems share is a very 
regular memory accesses that are known at compile time. 

Another area that has been studied is the area of compiler optimizations (see for example [18], [19], 
[24], [27]).  Optimizing blocked algorithms has been extensively studied (see for example [16]).  The 
SUIF compiler framework includes libraries for performing data dependency analysis and loop 
transformations among other things.  In this context, it is important to note that SUIF does not handle 
the data dependencies present in the Floyd-Warshall algorithm in a manner that improves the 
processor-memory traffic.  It will not perform the transformations discussed in Section 3 without user 
intervention [9]. 

Although much of the focus of cache optimization has been on dense linear algebra problems, there 
has been some work that focuses on irregular data structures.  Chilimbi et. al. discusses making 
pointer-based data structures cache-conscious in [6].  He focuses on providing structure layouts to 
make tree structures cache-conscious.  The difference between this work and ours is that we are 
focusing on the dynamic heap data structure, instead of a more static tree structure such as a binary 
tree.  As we discuss in Section 4.2, this dynamic nature presents some unique challenges.  LaMarca 
and Ladner developed analytical models and showed simulation results predicting the number of cache 
misses for the heap in [17].  However, the predictions they made were for an isolated heap, and the 
model they used was the hold model, in which the heap is static for the majority of operations.  In our 
work, we assume a very dynamic nature for the heap, and we conduct experiments for complete 
algorithms as opposed to isolating the heap. 

We have recently published work on the Floyd-Warshall algorithm in [22] that showed a 2x 
improvement using the Unidirectional Space Time Representation.  Compared with [22], this paper 
represents a new approach to optimizing the Floyd-Warshall algorithm, namely recursion and a novel 
tiled implementation.  We also expand our scope of algorithms to include Dijkstra’s algorithm for the 
single source shortest path problem and Prim’s algorithm for the minimum spanning tree problem. 

 
3. Optimizing the Floyd-Warshall Algorithm 

 
In this section we address the challenges of the Floyd-Warshall algorithm.  In Section 3.1 we 

introduce and prove the correctness of a recursive implementation for the Floyd-Warshall algorithm.  
We also analyze the cache performance and show experimental results for this implementation 
compared with the baseline.  We also show that by tuning the recursive algorithm to the cache size, we 
can improve its performance by roughly 10%.  In Section 3.2, we present a novel tiled implementation 
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of the Floyd-Warshall algorithm.  Finally, in Section 3.3, we address the issue of data layout for both 
the blocked implementation and the recursive implementation. 

Throughout this section we make use of the following assumptions.  We assume a directed graph 
with N vertices and E edges.  We assume the cache model described in Section 2.2, where Ci < N2 for 
some i and the TLB size is much less than N.  To experimentally validate our approaches and their 
analysis, the actual problem sizes that we are working with are between 1024 and 4096 nodes (1024 ≤  
N ≤ 4096).  Each data element is 8 bytes.  Many processors currently on the market have in the range 
of 16 to 64 KB of level-1 cache and between 256 KB and 4 MB of level-2 cache.  Many processors 
have a TLB with approximately 64 entries and a page size of 4 to 8KB. 

In [14] it was shown that the lower bound on processor-memory traffic was Ω(N3/ C ) for the usual 
implementation of matrix multiply.  By examining data dependency graphs for both matrix 
multiplication and the Floyd-Warshall algorithm, it can be shown that matrix multiplication reduces to 
the Floyd-Warshall algorithm with respect to processor-memory traffic.  Therefore, we have the 
following: 

Lemma 3.1:  The lower bound on processor-memory traffic for the Floyd-Warshall algorithm, 
given a fixed cache size C, is Ω(N3/ C ), where N is the number of vertices in the input graph. 

 
3.1. A Recursive Implementation of the Floyd-Warshall Algorithm 

 
As stated earlier, recursive implementations have recently been used to increase cache performance.  

It was stated in [11] that recursive implementations perform automatic blocking at every level of the 
memory hierarchy.  To the authors’ knowledge, there does not exist a recursive implementation of the 
Floyd-Warshall algorithm.  The reason for this, is that the Floyd-Warshall algorithm not only contains 
all the dependencies present in ordinary matrix multiplication, but also additional dependencies that 
can not be satisfied by the simple recursive implementation of matrix multiply.  What is shown here is 
a novel recursive implementation of the Floyd-Warshall algorithm.  We also prove the correctness of 
the implementation and show analytically that it reaches an asymptotically optimal amount of 
processor memory traffic. 

In order to design a recursive implementation of the Floyd-Warshall algorithm, first examine the 
standard implementation when applied to a 2x2 matrix.  The code for this is shown in Figure 5a.  
Notice that 8 calls are made to the min() operation and each call requires 3 data values from the 
matrix.  Convert this into a recursive program by replacing the call to the min() function with a 
recursive call.  Instead of passing 3 data values, pass 3 sub-matrices corresponding to quadrants of the 
input matrix.  This code is shown in Figure 5b.  The initial call to the recursive algorithm passes the 
entire input matrix as each argument.  Subsequent calls pass quadrants of their input arguments as 
shown in Figure 5b.  Code similar to Figure 5a calling the min() operation is used as the base case for 
when the input matrices are of size 2x2. 

Theorem 3.1:  The recursive implementation of the Floyd-Warshall algorithm detailed above 
satisfies all dependencies in the Floyd-Warshall algorithm and computes the correct result. 

Proof: 
The correctness of this algorithm is proven using induction on the depth of the recursion tree.  At 

the bottom of the recursion tree, an ordinary implementation of the Floyd-Warshall algorithm is used. 
Base cases: 
If the depth of the recursion tree is 0, then the entire problem is solved using an ordinary 

implementation of the Floyd-Warshall algorithm.  This has been proven correct. 
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When the depth of the recursion tree is 1, the matrix is divided into four quadrants.  The top level of 
recursion will make the 8 recursive calls shown in Figure 5b, where A = B = C.  Each of these 
functions will then use an ordinary implementation of the Floyd-Warshall algorithm. 

The first call, step 1, passes the Northwest quadrant as each argument.  Since the function then uses 
an ordinary implementation of the Floyd-Warshall algorithm, this will correctly compute the 
Northwest quadrant of Dk for 1 ≤ k ≤ N/2. 

The second call, step 2, computes the Northeast quadrants of Dk for 1 ≤ k ≤ N/2.  Examining the 
dependencies for this computation shows that the data in the Northwest quadrant of Dk-1 is required in 
order to compute the Northeast quadrant of Dk.  This dependency is satisfied by passing the Northwest 
quadrant as input to the function in step 2 and by the fact that the Northwest quadrant of Dk-1 was 
computed in step 1.  In the same fashion, the third call, step 3, computes the Southwest quadrant of Dk 
for 1 ≤ k ≤ N/2 using data from the Northwest quadrant of Dk-1 computed in step 1. 

The fourth call, step 4, requires data from both the Northeast and the Southwest quadrants of Dk-1.  
These quadrants are passed as input to the function and were computed in steps 2 and 3.  Using these 
first 4 steps, we compute the complete Dk for 1 ≤ k ≤ N/2. 

Figure 4b shows that steps 5 – 8 are the reverse of steps 1 – 4.  In each step we compute the values 
for one quadrant of Dk for N/2 < k ≤ N.  All data required in each step is computed either in that step or 
in a previous step. 

Inductive step: 
Assume that the algorithm correctly computes the output when the depth of the recursion is d.  

When we consider the problem when the depth of recursion is d+1, each recursive call at the first level 
(Figure 4b), is a call to a problem in which the depth of recursion is d.  Each of these calls has been 
assumed to run correctly, given that all data required is available at the time of execution.  It was 
already shown that all data required for each of the 8 recursive calls at the top level is computed either 
during that step or in a previous step.  Therefore, the algorithm runs correctly when the depth of 
recursion is d+1, and by induction, the algorithm runs correctly for all recursion depths. < 

Theorem 3.2:  The recursive implementation reduces the processor-memory traffic by a factor 
of B, where ( )CB Ο= .  This is accomplished without any machine dependant setup cost, such 
as tuning of the block size. 

Proof: 
Note that the running time of this algorithm is given by 

( ) 3

2
*8 N

N
TNT =





=  

Define the amount of processor memory traffic by the function D(x).  Without considering cache, 
the function behaves exactly as the running time. 

( ) 3

2
*8 N

N
DND =





=  

Consider the problem after k recursive calls.  At this point the problem size is N/2k.  There exists 
some k such that N/2k = ( )CΟ , where C = cache size.  For simplicity we set B = N/2k. At this point, all 
data will fit in the cache and no further traffic will occur for recursive calls below this point.  
Therefore: 

( ) ( )2BOBD =  
By combining Equation 2 and Equation 3 it can be shown that: 

1

2

3
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Therefore, the processor-memory traffic is reduced by a factor of B. < 
Theorem 3.3:  The recursive implementation reduces the traffic between the ith and the (i-1)th 
level of cache by a factor of Bi at each level of the memory hierarchy, where ( )ii CB Ο= . 

Proof: 
Note first of all, that no tuning was assumed when calculating the amount of processor-memory 

traffic in the proof of Theorem 3.2.  Namely, Equation 3 holds fo r any N and any B where ( )CB Ο= . 
In order to prove Theorem 3.3, first consider the entire problem and the traffic between main 

memory and the mth level of cache (size Cm).  By Theorem 3.2, the traffic will be reduced by Bm where 
( )mm CB Ο= .  Next consider each problem of size Bm and the traffic between the mth level of cache and 

the (m-1)th level of cache (size Cm-1).  By replacing N in Theorem 3.2 by Bm, it can be shown that this 
traffic is reduced by a factor of Bm-1 where ( )11 −− Ο= mm CB . 

This simple extension of Theorem 3.2 can be done for each level of the memory hierarchy, and 
therefore the processor-memory traffic between the ith and the (i-1)th level of cache will be reduced by 
a factor of Bi, where ( )ii CB Ο= . < 

Finally, recall from Lemma 3.1 that the lower bound on processor-memory traffic for the Floyd-
Warshall algorithm is given by Ω(N3/ C ), where C is the cache size.  Also recall from Theorem 3.2 
the upper bound on processor-memory traffic that was shown for the recursive implementation was 
O(N3/B), where B2 = O(C).  Given this information we have the following Theorem. 

Theorem 3.4: Our recursive implementation is asymptotically optimal among all 
implementations of the Floyd-Warshall algorithm with respect to processor-memory traffic. 

As a final note in the recursive implementation, we show up to 2x improvement when we set the 
base case such that the base case would utilize more of the cache closest to the processor.  Once we 
reached a problem size B, where B2 is on the order of the cache size, we execute a standard iterative 
implementation of the Floyd-Warshall algorithm.  This improvement varied from one machine to the 
next and is due to the decrease in the overhead of recursion.  It can be shown that the number of 
recursive calls in the recursive algorithm is reduced by a factor of B3 when we stop the recursion at a 
problem of size B.  A comparison of full recursion and recursion stopped at a larger block size is 
shown for the Pentium III and the UltraSPARC III in Figures 11 and 12. 

In order to improve performance, B 2 must be chosen to be on the order of the L1 cache size.  The 
simplest and possibly the most accurate method of choosing B is to experiment with various tile sizes.  
This is the method that the Automatically Tuned Linear Algebra Subroutines (ATLAS) project 
employs [30].  However, it is beneficial to find an estimate of the optimal tile size.  A block size 
selection heuristic for finding this estimate is discussed in [22], and outlined here. 

• Use the 2:1 rule of thumb from [14] to adjust the cache size to that of an equivalent 4-way set 
associative cache.  This minimizes conflict misses since our working set consists of 3 tiles of 
data.  Self- interference misses are eliminated by the data being in contiguous locations within 
each tile and cross interference misses are eliminated by the associativity. 

• Choose B by Equation 5, where d is the size of one element and C is the adjusted cache size.  
This minimizes capacity misses. 

CdB =**3 2  
The baseline we use for our experiments is a straightforward implementation of the Floyd-Warshall 

algorithm.  It was shown in [22] that standard optimizations yield limited performance increases on 

5 

4
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most machines.  The Simplescalar results in Table 1 for the recursive implementation show a 30% 
decrease in level-1 cache misses and a 2x decrease in level-2 cache misses for problem sizes of 1024 
and 2048.  In order to verify the improvements on real machines, we compare the recursive 
implementation of the Floyd-Warshall algorithm with the baseline.  For these experiments the best 
block size was found experimentally.  The results show a 10x improvement in overall execution time 
on the Alpha, better than 7x improvement on the Pentium III and the MIPS, and almost a 3x 
improvement on the UltraSPARC III.  These results are shown in Figures 7-10.  Figures 11 and 12 
show that a 2x improvement in execution time on the UltraSPARC III can be gained by choosing the 
optimal base block size.  Likewise, a 30% improvement can be gained on the Pentium III.  Differences 
in performance gains between machines are expected, due to the wide variance in cache parameters 
and miss penalties. 

 
3.2. A Tiled Implementation for the Floyd-Warshall Algorithm 

 
Compiler groups have used tiling to achieve higher data reuse in looped code.  Unfortunately, the 

data dependencies from one k- loop to the next in the Floyd-Warshall algorithm make it impossible for 
current compilers including research compilers to perform 3 levels of tiling.  In order to tile the 
outermost loop we must cleverly reorder the tiles in such a way that satisfies data dependencies from 
one k-loop to the next as well as within each k- loop. 

Consider the following tiled implementation of the Floyd-Warshall algorithm.  Tile the problem into 
BxB tiles.  During the kth block iteration, update first the (k,k)th tile, then the remainder of the  kth row 
and kth column, then the rest of the matrix.  Figure 5 shows an example matrix tiled into a 4x4 matrix 
of blocks.  Each block is of size BxB.  During each outermost loop, we would update first the black tile 
representing the (k,k)th tile, then the grey tiles, then the white tiles.  In this way we satisfy all 
dependencies from each kth loop to the next as well as all dependencies within each kth loop. 

Theorem 3.5:  The new tiled implementation of the Floyd-Warshall algorithm reduces the 
processor memory traffic by a factor of B where B2 is on the order of the cache size. 

Proof sketch:  At each block we perform B3 operations.  There are N/B x N/B blocks in the array 
and we pass through each block N/B times.  This gives us a total of N3 operations.  In order to process 
each block we require only 3*B2 elements.  This gives us a total of N3/B total processor-memory 
traffic. < 

Given this upper bound on traffic for the tiled implementation and the lower bound shown in 
Lemma 3.1, we have. 

Theorem 3.6: The new tiled implementation is asymptotically optimal among all 
implementations of the Floyd-Warshall algorithm with respect to processor-memory traffic. 

When implementing the tiled implementation of the Floyd-Warshall algorithm, it is important to use 
the best possible block size.  As mentioned in Section 3.1, the best block size should be found 
experimentally, and the block size selection heuristic discussed in Section 3.1 can be used to give a 
rough bound on the best block size.  However, when implementing the tiled implementation, it is also 
important to note that the search space must take into account each level of cache as well as the size of 
the TLB.  Given these various solutions for B the search space should be expanded accordingly. 

Simplescalar results for the tiled implementation are shown in Table 2.  These results show a 2x 
improvement in level-2 cache misses and a 30% improvement in level-1 cache misses.  Experimental 
results show a 10x improvement in execution time for the Alpha, better than 7x improvement for the 
Pentium III and the MIPS and roughly a 3x improvement for the UltraSPARC III (See Figures 13-16). 

 
3.3. Data Layout Issues 
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It is also important to consider data layout when implementing any algorithm.  It has been shown by 

a number of groups that data layouts tuned to the data access pattern of the algorithm can reduce both 
TLB and cache misses (see for example [20], [22], and [4]).  In the case of the recursive algorithm, the 
access pattern is matched by a Z-Morton data layout.  The Z-Morton ordering is a recursive layout 
defined as follows:  Divide the original matrix into 4 quadrants and lay these tiles in memory in the 
order NW, NE, SW, SE.  Recursively divide each quadrant until a limiting condition is reach.  This 
smallest tile is typically laid out in either row or column major fashion (see Figure 18).  See [5] for a 
more formal definition of the Morton ordering. 

In the case of the tiled implementation, the Block Data Layout (BDL) matches the access pattern.  
The BDL is a two level mapping that maps a tile of data, instead of a row, into contiguous memory.  
These blocks are laid out row-wise in the matrix and data is laid out row-wise within the block (see 
Figure 17).  By setting the block size equal to the tile size in the tiled computation, the data layout will 
exactly match the data access pattern. 

We experimented with both of these data layouts for each of the algorithms.  The results are shown 
in Tables 3 and 4.  All of the execution times were within 15% of each other with the Z-Morton data 
layout winning slightly for the recursive implementation and the BDL winning slightly for the tiled 
implementation.  The fact that the Z-Morton was slightly better for the recursive implementation and 
likewise the BDL for the tiled implementation was exactly as expected, since they match the data 
access pattern most closely.  The closeness of the results is mostly likely due to the fact that the 
majority of the data reuse is within the final block.  Since both of these data layouts have the final 
block laid out in contiguous memory locations, they perform equally well. 

It is also important to note that the Z-Morton data layout has a very complex index computation, 
which can only be hidden in a recursive algorithm.  The BDL has a very simple index computation in 
comparison.  Therefore it is significant to show that for non-recursive algorithms, the BDL performs 
just as well or better, while avoiding the overhead of a complex index computation. 

 
4. Optimizing the Single-Source Shortest Path Problem 

 
In this section we discuss cache-friendly optimizations of Dijkstra’s algorithm for the single-source 

shortest path problem.  We first consider the input graph representation in Section 4.1.  For small 
problem sizes, the graph representation represents the majority of the processor memory traffic.  We 
present a cache friendly representation that improves performance by 20% to 2x.  In Section 4.2, we 
discuss optimizing the priority queue.  As the heap is the most common and the most optimal 
implementation of the priority queue, we focus on designing a cache-friendly heap data structure.  We 
compare our implementation to the asymptotically optimal implementation of the heap in Dijkstra’s 
algorithm with respect to time complexity, the Fibonacci heap. 

 
4.1. Optimizing the Graph Representation 

 
For the problem sizes that we have considered in Section 3, i.e. 1K to 4K nodes, the graph 

representation represents the majority of traffic in Dijkstra’s algorithm.  This is due to the fact that the 
priority queue is very small and fits entirely within the cache.  Cache conflicts between the graph 
representation and the priority queue can pose a problem even at these small sizes, but we assume for 
this section that the conflicts are minimal.  For all problem sizes, the size of the priority queue starts at 
N and decreases throughout the computation.  In contrast, the graph representation will be of size O(N  
+ E), where E = O(N2) for dense graphs. 
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One difficulty we face when optimizing the graph representation is the access pattern.  Each 
element in the representation is accessed exactly once.  For each node that is extracted from the heap, 
the corresponding list of adjacent nodes is read from the graph representation.  Once each node is 
extracted from the heap, the computation is complete.  In this context, we can take advantage of two 
things.  The first is prefetching.  Modern processors perform aggressive prefetching in order to hide 
memory latencies.  The second is to optimize at the cache line level.  In this case, a single miss would 
bring in multiple elements that would subsequently be accessed and result in cache hits.  This is known 
as minimizing cache pollution. 

There are two commonly used graph representations.  The adjacency matrix is an NxN matrix, 
where the (i,j)th element is the cost from the ith element to the jth element.  This representation is of size 
O(N2).  It has the nice property that elements are accessed in a contiguous fashion and therefore, cache 
pollution will be minimized and prefetching will be maximized.  However, for sparse graphs, the size 
of this representation is inefficient.  The adjacency list representation is a pointer-based representation 
where a list of adjacent nodes is stored for each node in the graph.  Each node in the list includes the 
cost of the edge from the given node to the adjacent node.  This representation has the property of 
being of optimal size for all graphs, namely O(N+E).  However, the fact that it is pointer based, leads 
to cache pollution and difficulties in prefetching. 

Consider a simple combination of these two representations.  For each node in the graph, we have a 
corresponding array of adjacent nodes.  The size of this array is exactly the out-degree of the given 
node.  There are simple methods to construct this representation when the out-degree is not known 
until run time.  For this representation, the elements at each point in the array look similar to the 
elements stored in the adjacency list.  Each element must store both the cost of the path and the index 
of the adjacent node.  Since the size of each array is exactly the out-degree of the corresponding node, 
the size of this representation is exactly O(N+E).  This makes it optimal with respect to size.  Also, 
since the elements are stored in arrays and therefore in contiguous memory locations, the cache 
pollution will be minimized and prefetching will be maximized.  Subsequently this representation will 
be referred to as the adjacency array representation. 

In order to demonstrate the performance improvements using our graph representation, we 
performed Simplescalar simulations as well as experiments on two different machines, the Pentium III 
and UltraSPARC III, for Dijkstra’s algorithm.  The Simplescalar simulations show a significant 
improvement in level-2 cache misses for the adjacency array representation compared with the 
adjacency list representation (see Table 5).  This is due to the reduction in cache pollution and increase 
in prefetching tha t was predicted.  The experimental results also demonstrate improved performance.  
Figures 20 - 23 show a 2x improvement for Dijkstra’s algorithm on the Pentium III and a 20% 
improvement on the UltraSPARC III  This significant difference in performance is due in part to the 
difference in the memory hierarchy of these two architectures. 

A second comparison to observe is between the Floyd-Warshall algorithm and Dijkstra’s algorithm 
for very sparse graphs, i.e. edge densities less than 20%.  For these graphs, Dijkstra’s algorithm is 
more efficient for the all pairs shortest path problem.  By using the adjacency array representation of 
the graph in Dijkstra’s algorithm, the range of graphs over which Dijkstra’s algorithm outperforms the 
Floyd-Warshall algorithm, can be increased.  Figures 24 and 25 show a comparison of the best Floyd-
Warshall algorithm with Dijkstra’s algorithm for sparse graphs.  On the Pentium III, we were able to 
increase the range for Dijkstra’s algorithm from densities up to 5% to densities up to 20%.  On the 
UltraSPARC III we increased the range from densities up to 20% to densities up to 35%. 

 
4.2. Optimizing the Priority Queue  
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For very large problems, those in which N is much larger than the cache size, the priority queue can 
generate a large number of cache misses.  For this reason, we discuss optimizing the priority queue.  
Due to the length of time required to simulate or execute either Dijkstra’s algorithm or Prim’s 
algorithm for very large problem sizes, we have defined an architecture for which small problem sizes 
will stress the memory hierarchy.  This architecture has a 4KB level-1 cache and 16KB level-2 cache.  
The problem size we used was 4096 nodes with a density of 90%.  Using these parameters we show 
Simplescalar results to demonstrate improved cache performance. 

Optimizing the priority queue to improve cache performance presents a very unique set of 
challenges.  The optimal implementation with respect to running time uses the Fibonacci heap.  This 
implementation is a pointer based data structure that is extremely dynamic.  Nodes are moved within 
each tree and among trees in almost every operation.  In [6], Chilimbi et al. discusses the optimization 
of various pointer based data structures.  However, he focuses on very static structures where the main 
access pattern is a root to leaf path traversal.  This work cannot be directly applied to the heap for two 
reasons.  The first is the dynamic nature of the heap that was just mentioned.  The second is the fact 
that the access pattern is often not a simple root to leaf path.  For example an update operation will 
start by accessing an element in the middle of the tree and then traverse up the tree for some time.  In 
[17], LaMarca et. al. discusses the analysis and optimization of the heap.  The heap analysis and 
experiments that are discussed here differ significantly from that work.  We assume that the heap is 
very dynamic, while the analysis done by LaMarca is done in the Hold model,  one in which the heap is 
static for most of the operations.  LaMarca also isolates the heap for analysis and experimentation, 
whereas we conduct all of our simulations on the complete Dijkstra’s algorithm. 

In order to establish a baseline, we examine the performance of the Fibonacci heap in Dijkstra’s 
algorithm.  The Fibonacci heap represents the optimal implementation of the priority queue with 
respect to time complexity.  The Extract-min operation requires O(lg V) time and the Update operation 
takes O(1), constant time when amortized over all operations.  The total time complexity for Dijkstra’s 
single source shortest path problem using the Fibonacci heap is O((VlgV + E).  

In contrast to the Fibonacci heap consider the clustered heap, a more cache-friendly implementation 
of the priority queue.  In [6], Chilimbi et. al. presents a simple ancestor-descendant clustering within 
cache lines for static trees.  By placing d element subtrees into cache lines, you will incur only one 
miss to access a path through any given subtree.  When compared with a breadth-first mapping this 
will decrease processor-memory traffic by a factor of lg(d), where lg(d) is the height of the subtree in a 
single cache line and d is the number of elements that fit into a cache line.  When applying this 
technique to the heap, there are a few factors that must be considered.  The first is the dynamic nature 
of the heap in the context of Dijkstra’s algorithm.  We are able to decrease the dynamic nature some 
by applying the clustering to a standard implementation of the heap.  This presents much less data 
movement than in the Fibonacci heap.  One nice property of the heap is its simple index computation 
for ancestors and descendants.  Unfortunately, this property does not remain once we apply the 
clustering layout.  In order to realize the clustering layout, while sustaining the property of simple 
index computation, we place an indirection layer between the access and the data.  This layer is 
actually a standard heap containing pointers to the actual data.  The size of this indirection heap is 
much smaller than the real heap and therefore, presents few problems with respect to the cache.  
Figure 19 gives a graphical example of using the indirection heap to access the clustered data layout.  
In this fashion we can decrease the cost of access by a factor of lg(d) and retain the property of a 
simple index computation. 

As a second cache friendly implementation of the priority queue, consider a partitioned heap.  In 
this case the original large heap would be partitioned into k independent heaps, each of size c, where c 
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is the on the order of the cache size.  If we divide the original heap by placing the first N/k nodes into 
the first heap and so on, we can order the updates following each extract-min, such that each 
independent heap will be brought into the cache at most once.  In this way, no node in the partitioned 
heap will be brought into the cache more than once, and the amount of traffic is bounded by V.  Since 
we perform V extract-min’s and subsequent updates, the total traffic for the Update operations will be 
bounded by V2 compared with a possible E*lg(V), where E = O(V2) for dense graphs.  In order to find 
the minimum, we must examine the minimum of each of the k independent heaps rather than just 
extracting the root of our original large heap.  Once the minimum is located, there is a small reduction 
in the cost for the actual extraction.  The total cost for the extract-min will then be O(k + lg(V/k)). 

In order to demonstrate the cache performance of the clustered heap and the partitioned heap, we 
define an architecture in which the cache will be stressed as mentioned earlier and perform 
Simplescalar simulations for Dijkstra’s algorithm.  The result is shown in Table 6.  Notice the 
reduction in the level-2 cache miss rate for the clustered heap and the partitioned heap vs. the 
Fibonacci heap.  The results also show that the partitioned heap performs slightly better than the 
clustered heap in both level-1 and level-2 cache miss rate. 

 
5. Optimizing the Minimum Spanning Tree Problem 

 
As mentioned in Section 2, Prim’s algorithm for minimum spanning tree is very similar to 

Dijkstra’s algorithm for the single source shortest path problem.  For this reason the optimizations 
applicable to Dijkstra’s algorithm are applicable to Prim’s algorithm.  Figures 26 - 29 show the result 
of applying the optimization to the graph representation discussed in Section 4.1 to Prim’s algorithm.  
Recall that this was an optimization to the graph representation replacing the adjacency list 
representation with the adjacency array representation.  Our results show a 2x improvement on the 
Pentium III running Windows 2000 and 20% for the UltraSPARC III.  These results are for problem 
sizes 2048 and 4096.  This result is very similar to the results we saw for the same comparison in 
Dijkstra’s algorithm.  Recall that our Simplescalar results for Dijkstra’s algorithm showed an 
improvement in the level-2 cache misses.  Based on the similarity between Dijkstra’s algorithm and 
Prim’s algorithm, we could expect similar cache performance improvements for Prim’s algorithm. 

 
6. Conclusion 

 
Using various optimizations for graph algorithms, we have showed a 3x to 10x improvement for the 

Floyd-Warshall algorithm and a 20% to 2x improvement for Dijkstra’s algorithm and Prim’s algorithm.  
Our optimizations to the Floyd-Warshall algorithm represent a novel recursive implementation as well 
as a novel tiled implementation of the algorithm.  We also compared the performance of a non- linear 
data layout with that of a simple block data layout.  For Dijkstra’s algorithm and Prim’s algorithm, we 
presented a cache-friendly graph representation that gave significant performance improvements.  We 
also discussed optimization of the priority queue and showed significant improvements in cache miss 
rate for our clustered heap and our partitioned heap compared with the Fibonacci heap. 

This work is part of the Algorithms for Data IntensiVe Applications on Intelligent and Smart 
MemORies (ADVISOR) Project at USC [1].  In this project we focus on developing algorithmic 
design techniques for mapping applications to architectures.  Through this we understand and create a 
framework for application developers to exploit features of advanced architectures to achieve high 
performance. 
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Figure 1:  kth step of Floyd-Warshall 
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Figure 3: kth iteration of outer loop 
in Floyd-Warshall 
Algorithm 

Figure 2: Dijkstra’s algorithm 

Definitions: V[G] is the set of 
vertices, Adj[u] is the adjacency 
list for vertex u, d[v] is the 
distance from the source to v 

S = Ø 
Q = V[G] 
While Q ≠ Ø 
 u = Extract-Min(Q) 
 S = S U {u} 
 For each vertex v ∈ Adj[u] 
  Update d[v] 

Floyd-Warshall (A)  
{ 
 A11 = min(A11, A11+A11); 
 A12 = min(A12, A11+A12); 
 A21 = min(A21, A21+A11); 
 A22 = min(A22, A21+A12); 
 A22 = min(A22, A22+A22); 
 A21 = min(A21, A22+A21); 
 A12 = min(A12, A12+A22); 
 A11 = min(A11, A12+A21); 
} 

FWR (A, B, C)  
{ 
 if (not base case) { 
  FWR(A11, B11, C11); 
  FWR(A12, B11, C12); 
  FWR(A21, B21, C11); 
  FWR(A22, B21, C12); 
  FWR(A22, B22, C22); 
  FWR(A21, B22, C21); 
  FWR(A12, B12, C22); 
  FWR(A11, B12, C21); 
 } 
 else { 
  /* run standard Floyd- 

   Warshall */ 
  … 
 } 
} 

Figure 5, a&b: Recursive implementation of the Floyd-
Warshall algorithm (FWR) 
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Figure 6: Diagram for tiled 
implementation of the 
Floyd-Warshall algorithm 
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Figure 8: Baseline vs. Recursi ve 
implementation on 
UltraSPARC III 
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Data level-1 cache misses 
N Baseline Tiled 

1024 0.806 0.542 
2048 6.442 4.326 

(billions) 
 

Data level-2 cache misses 
N Baseline Tiled 

1024 0.537 0.276 
2048 4.294 2.195 

(millions) 
 

Table 2: Simplescalar result 
(Tiled Floyd-Warshall) 
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implementation on Alpha 
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Figure 13: Baseline vs. Tiled 
implementation on 
Pentium III 
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Figure 18: The Morton Layout 
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Cache miss rates 
 Linked-List Array 

D-Level 1 0.2936 0.2622 
D-Level 2 0.4242 0.3545 

(DL1:16k, DL2:256k, Input: 2048 nodes,  0.9 density) 
 

 
Table 5: Simplescalar results for 

Linked-List and Array graph 
representation 

Recursive Implementation 
N Morton 

Layout 
Block Data 

Layout 
2048 103.48 111.42 
4096 820.45 878.89 

(sec) 
 

Tiled Implementation 
N Morton 

Layout 
Block Data 

Layout 
2048 99.25 99.39 
4096 779.53 780.41 

(sec) 
 
Table 3: Pentium III results for data 

layout comparison. 

Recursive Implementation 
N Morton 

Layout 
Block Data 

Layout 
2048 307.33 311.26 
4096 2460.53 2488.88 

(sec) 
 

Tiled Implementation 
N Morton 

Layout 
Block Data 

Layout 
2048 278.48 271.35 
4096 2248.20 2184.09 

(sec) 
 
Table 4: Ultrasparc III results for data 

layout comparison. 
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Figure 20: Linked-List vs Array graph 
representation for Dijkstra’s 
alg. on Pentium III, N = 2048 
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Figure 23: Linked-List vs Array graph 
representation for Dijkstra’s alg. 
on UltraSPARC III, N = 4096 
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 Baseline 
(Fibonacci heap) 

Clustered Heap k-Partitioned Heap 

Computational 
complexity 

O((VlgV + E) O((V+E)lgV) O(Vk+(V+E)lg(V/k)) 

Data Level-1 
cache miss rate 

0.0427 0.0479 0.0455 

Data Level-2 
cache miss rate 

0.5927 0.3138 0.2914 

Data Level-1 
cache misses 

59521364 62833311 61504500 

Data Level-2 
cache misses 

51973614 54356226 50013594 

(DL1:2k, DL2:8k, Input graph: 4096 nodes with 0.9 Density) 

Table 6: Simplescalar results for Dijkstra’s algorithm with various 
heap implementations 
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Figure 26: Linked-List vs Array graph 
representation  for Prim’s alg. 
on Pentium III, N = 2048 

Figure 28: Linked-List vs Array graph 
representation  for Prim’s alg. 
on UltraSPARC III, N = 2048 

Figure 29: Linked-List vs Array graph 
representation  for Prim’s alg. 
on UltraSPARC III, N = 2048 
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Abstract 
Graph algorithms are fundamental in a wide variety of fields, and while much focus has been on 
optimizing various algorithms for improved cache performance, little focus has been on the area of 
graph algorithms.  The reasons for this are varied, but at the core is that graph algorithms pose a very 
different and complex challenge to improving cache performance.  In this paper, we present a new 
recursive implementation for the fundamental graph problem of Transitive Closure, namely the Floyd-
Warshall Algorithm, and prove its optimality with respect to processor-memory traffic.  Using this 
cache-oblivious implementation we show more than a 6x improvement in execution time on three 
different architectures.  We also discuss the impact of data layout on cache performance in the context 
of a tiled implementation of the Floyd-Warshall algorithm.  Secondly, we address Dijkstra’s algorithm 
for the single-source shortest-path problem and Prim’s algorithm for Minimum Spanning Tree, for 
which neither tiling nor recursion can be directly applied.  For these algorithms, we demonstrate up to 
a 2x improvement by using a cache-friendly graph representation.  Finally, we apply both the cache 
friendly graph representation and the basic idea of tiling to the problem of graph matching.  Using 
these techniques we show performance improvements of 2x – 3x.  Experimental results are shown for 
the Pentium III, UltraSPARC III, Alpha 21264, and MIPS R12000 machines.  Problem sizes ranged 
from 1024 to 4096 vertices for the Floyd-Warshall algorithm and up to 65536 vertices for Dijkstra’s 
algorithm, Prim’s algorithm, and graph matching.  We demonstrate improved cache performance 
using the SimpleScalar simulator. 

                                                 
* Supported by the US DARPA Data Intensive Systems Program under contract F33615-99-1-1483 monitored by Wright 
Patterson Airforce Base and in part by an equipment grant from Intel Corporation. 
+ A previous version of this paper appears in Proceedings of the International Parallel and Distributed Processing 
Symposium, April 2002. 
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1. Introduction 
 
The motivation for this work is what is commonly referred to as the processor-memory gap.  

While memory density has been growing rapidly, the speed of memory has been far outpaced by the 
speed of modern processors.  Current latencies to memory are on the order of 100 processor cycles.  
This phenomenon has resulted in severe application level performance degradation on high-end 
systems.  This problem has been well studied for many dense linear algebra problems, such as matrix 
multiplication and FFT (see for example, [23][32][36]).  A similar problem is also present and well 
studied in I/O systems (see for example, [17][33]). 

A number of groups are attempting to improve performance by performing computations in 
memory.  Smart memory or processing in memory takes advantage of the high on chip bandwidth of 
memory to perform data intensive operations (see for example, [4][20][37]).  Other groups are 
attacking the problem in software; either in the compiler through reordering instructions and 
prefetching (see for example, [16][18][27]) or through complex data layouts to improve cache 
performance (see for example, [6][10][13]). 

Achieving better overall performance by optimizing cache performance is a difficult problem.  The 
performance of deep memory hierarchies present in most modern processors has been shown to differ 
significantly from predictions based on a single level of cache.  Different miss penalties for each level 
of the memory hierarchy as well as the TLB also play an important role in the effectiveness of cache-
friendly optimizations.  These penalties vary among processors and cause large variations in the 
effectiveness of cache performance optimizations. 

The area of graph problems is fundamental in a wide variety of fields, most notably network 
routing, distributed computing, and computer aided circuit design.  Network routing in particular is a 
rapidly growing problem with the explosion of the Internet.  Routing tables are growing in size and the 
frequency of updates is pushing the limits of current routers.  Graph problems pose unique challenges 
to improving cache performance due to their irregular data access patterns.  These challenges often 
cannot be handled using standard cache-friendly optimizations [9].  The focus of this research is to 
develop methods of meeting these challenges.  A suite of data intensive kernels or stressmarks 
designed to stress the memory hierarchy is discussed in [21] & [22].  The transitive closure problem 
discussed in this paper is from the stressmark suite. 

In this paper we present a number of cache-friendly optimizations to the Floyd-Warshall algorithm, 
Dijkstra’s algorithm, Prim’s algorithm, and graph matching.  For the Floyd-Warshall algorithm we 
present a cache-oblivious recursive implementation that achieves more than a 6x improvement over 
the baseline implementation on three different architectures.  We also show that by tuning the base 
case for the recursion, we can further improve performance by up to 2x.  We also show analysis and 
discuss the impact of data layout on cache performance in the context of a tiled implementation of the 
Floyd-Warshall algorithm.  While these techniques are well known for dense linear algebra problems 
such as matrix multiply, their application to transitive closure faces a significantly different set of 
challenges.  Note that today’s state of the art research compilers cannot generate these 
implementations [9]. 

There are some natural combinations of implementation and data layout that decrease overhead 
costs, such as index computation, and yield performance advantage. In this paper, we show that the 
recursive and tiled implementations of the Floyd-Warshall algorithm perform roughly equal with 
either the Morton layout or the Block Data Layout. 
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For Dijkstra’s algorithm and Prim’s algorithm, to which tiling and recursion are not directly 
applicable, we use a known cache-friendly graph representation.  By using a data layout for the graph 
representation that matches the access pattern we show up to a 2x improvement in execution time. 

Finally, we use the techniques discussed with respect to the Floyd-Warshall algorithm and 
Dijkstra’s algorithm to optimize cache performance for the problem of graph matching.  The algorithm 
we use is a primitive graph matching algorithm for bipartite graphs.  We first apply the cache friendly 
graph representation used for Dijkstra’s algorithm and Prim’s algorithm, since the data access pattern 
to the graph is similar.  We then use the idea of tiling to reduce the working set size.  Performance 
improvements were in the range of 2x to 3x depending on the density of the graph and the quality of 
the partitioning done to accomplish tiling. 

The remainder of this paper is organized as follows:  In Section 2 we give the background needed 
and briefly summarize some related work in the areas of cache optimization and compiler 
optimizations.  In Section 3 we discuss optimizing the Floyd-Warshall algorithm.  In Section 4 we 
discuss optimizing Dijkstra’s algorithm.  In Section 5 we apply the optimizations discussed in Section 
4 to Prim’s algorithm.  In Section 6 we discuss applying the techniques to the problem of graph 
matching.  Finally, in Section 7 we draw conclusions. 

 
2. Background and Related Work 

 
In this section we give the background information required in our discussion of various 

optimizations in Section 3 - 6.  In Section 2.1 we give a brief outline of the graph algorithms.  Those 
readers comfortable with the algorithms can skip this.  For more details of these algorithms see [7] or 
[14].  In Section 2.2 we give some background on cache-based architectures and optimizing algorithms 
for improved cache performance.  In Section 2.3 we discuss some of the challenges that are faced in 
making the transitive closure problem cache-friendly.  We also discuss the model that we use to 
analyze cache performance and the four architectures that we use for experimentation throughout the 
paper.  Finally, in Section 2.3 we give some information regarding other work in the fields of cache 
analysis, cache-friendly optimizations, and compiler optimizations and how they relate to our work. 

 
2.1. Overview of Key Graph Algorithms  

 
For the sake of discussion, suppose we have a directed graph G with N vertices labeled 1 to N and 

E edges.  The Floyd-Warshall algorithm is a dynamic programming algorithm, which computes a 
series of N, NxN matrices where Dk is the kth matrix and is defined as follows: Dk

(i,j) = shortest path 
from vertex i to vertex j composed of the subset 
of vertices labeled 1 to k.  The matrix D0 is the 
original cost matrix for the given graph G.  We 
can think of the algorithm as composed of N 
steps.  At each kth step, we compute Dk using the 
data from Dk-1 in the manner shown below for 
each (i, j)th value.  Pseudo-code is given in 
Figure 1. 

( )),(
1

),(
1

),(
1

),( ,min jk
k

ki
k

ji
k

ji
k DDDD −−− +=  

Dijkstra’s algorithm is designed to solve the 
single-source shortest path problem.  It does this 
by repeatedly extracting from a priority queue Q 

Floyd-Warshall(W) 
 
1. n ← rows[W] 
2. D(0) ← W 
3. for k ← 1 to n 
4. for i ← 1 to n 
5. for j ← 1 to n 
6. dij

(k) ← min(dij
(k-1), dik

(k-1) + dkj
(k-1)) 

7. return D(n) 

Figure 1:  Pseudo code for the Floyd-Warshall 
algorithm 
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the nearest vertex u to the source, given the distances 
known thus far in the computation (Extract-Min 
operation).  Once this nearest vertex is selected, all 
vertices v that neighbor u are updated with a new 
distance from the source (Update operation).  The 
pseudo-code for the algorithm is given in Figure 2.  The 
optimal implementation of Dijkstra’s algorithm utilizes 
the Fibonacci heap and has complexity O(N lg(N) + E), 
although the Fibonacci heap may only be interesting in 
theory due to large constant factors. 

Prim’s algorithm for Minimum Spanning Tree is 
very similar to Dijkstra’s algorithm for the single-source 
shortest path problem.  In both cases a root node or 
source node is chosen and all other nodes reside 
in the priority queue.  Nodes are extracted using 
an Extract-min operation and all neighbors of 
the extracted vertex are updated.  The 
difference in Prim’s algorithm is that nodes are 
updated with the weight of the edge from the 
extracted node instead of the weight from the 
source or root node. 

For the sake of graph matching a subset M 
of E is considered a matching if no vertex is 
incident on more than one edge in M.  A 
matching is considered maximal if it is not a 
subset of any other matching.  A vertex is 
considered free if no edge in M is incident upon it.  Using these definitions a primitive matching 
algorithm can be defined as follows [29].  Beginning at a free vertex use a breadth first search to find a 
path P from that free vertex to another free vertex alternating between edges in M and edges not in M.  
This is considered an augmenting path.  Update the matching M by taking the symmetric difference of 
the edge sets of M and P.  The algorithm is complete when no augmenting path can be found.  The 
running time of this algorithm has been shown to be O(N*E).  Pseudo-code is given in Figure 3.  A 
more detailed explanation of this primitive matching algorithm is given in [29]. 

 
2.2. Overview of Cache Based Architectures and Optimizing Algorithms for Improved Cache 

Performance 
 
It is a well-known fact that the speed of modern processors is increasing at a rate of roughly 60% 

per year while the speed of memory is increasing at a rate of roughly 7% per year.  This difference is 
often referred to as the processor-memory gap, and it causes the latency to memory as seen by the 
processor to increase significantly with each passing year.  In order to hide this increasing latency, 
caches have been designed to take advantage of locality of reference; the fact that once an element is 
accessed there is a good chance that it and/or elements near will be accessed in the near future.  The 
cache is much smaller than main memory and is placed much closer to the processor in terms of 
latency.  Modern processors are including more levels of cache, each level larger in size and farther 
from the processor in terms of latency. 

Dijkstra’s(V) 
 
1. S = Ø 
2. Q = V[G] 
3. while Q ≠ Ø 
4. u = Extract-Min(Q) 
5. S = S U {u} 
6. for each vertex v ∈ Adj[u] 
7. Update d[v] 
8. return S 

Figure 2:  Pseudo code for Dijkstra’s 
algorithm 

Find_Match(G, M) 
 
1. while (there exists an augmenting path) 
2. { 
3. increase |M| by one using the augmenting 

path; 
4. } 
 
5. return M; 

Figure 3:  Pseudo code for primitive graph 
matching algorithm 
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Invariably the processor will access data that is not in the cache and this will result in a cache miss.  
Cache misses can be categorized into one of three categories: cold misses, capacity misses, and 
conflict misses.   A cold miss occurs the first time a data element is accessed.  These misses are 
unavoidable.  A capacity miss occurs if the working set of the application is larger than the cache.  
These misses can be avoided by either decreasing the working set or increasing the size of the cache.  
A conflict miss occurs if two or more data elements in the working set map to same place in the cache 
and the replacement of one results in a subsequent cache miss when that element is accessed.  This 
type of miss can be avoided in a number of ways including improved data access patterns, improved 
data layout, reducing the working set, etc [24]. 

Two other issues that should be addressed are cache pollution and TLB misses.  TLB misses are 
similar to cache misses except that they refer to misses in the Translation Look-aside Buffer.  They can 
be categorized the same as cache misses and reducing them follows a similar pattern.  Cache pollution 
is a somewhat different issue.  This refers to when a cache line is brought into the cache and only a 
small portion of it is used before it is pushed out of the cache.  A large amount of cache pollution will 
increase the bandwidth requirement of the application, even though the application is not utilizing 
more data. 

Based on this discussion, the keys to improve the performance of the memory system are as 
follows: increase data reuse, decrease cache conflicts, and decrease cache pollution.  The techniques 
that we use to achieve these ends can be categorized as data layout optimizations and data access 
pattern optimizations.  In our data layout optimizations we attempt to match the data layout to an 
existing data access pattern.  For example, we use the Block Data Layout to match the access pattern 
of a tiled algorithm (see Section 3), or we an adjacency array to match the access pattern of Dijkstra’s 
algorithm and Prim’s algorithm (see Section 4 & 5).  In our data access pattern optimizations, we 
design both novel and trivial optimizations to the algorithm to improve the data access pattern.  For 
example, we implemented both a novel tiled implementation and a novel recursive implementation of 
the Floyd-Warshall algorithm to improve the data access pattern. 

A different approach to improving the performance of the cache is to design cache-oblivious 
algorithms.  This is explored in by Frigo, et. al. in [12].  In this article, the algorithms do not ignore the 
presence of a cache, but rather they use recursion to improve performance regardless of the size or 
organization of the cache.  By doing this, they can improve the performance of the algorithm without 
tuning the application to the specifics of the host machine.  In our work we develop a cache-oblivious 
implementation of the Floyd-Warshall algorithm.  One difference between this work and ours is that 
they assume a fully associative cache when developing and analyzing the techniques.  For this reason, 
they do not consider any data layout optimizations to avoid cache conflicts.  They assume that at some 
point in the recursion the problem will fit into the cache and all work done following this point will be 
of optimal cost.  In fact we show between 20% and 2x performance improvements by optimizing what 
is done once we reach a problem size that fits into the cache. 

 
2.3. Challenges 

 
Transitive closure presents a very different set of challenges from those present in dense linear 

algebra problems such as matrix multiply and FFT.  In the Floyd-Warshall algorithm, the operations 
involved are comparison and add operations.  There are no floating-point operations as in matrix 
multiply and FFT.  We are also faced with data dependences that require us to update the entire NxN 
array Dk before moving on to the (k+1)th step (see Figure 4).  This data dependence from one kth loop 
to the next eliminates the ability of any commercial or research compiler to improve data reuse.  We 
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have explored using the SUIF research compiler and found 
that it cannot perform the optimizations discussed in Section 3 
without user provided knowledge of the algorithm [9].  These 
challenges mean that although the computational complexity 
of the Floyd-Warshall algorithm is O(N3), equivalent to matrix 
multiply, often transitive closure displays much longer running 
times. 

In Dijkstra’s algorithm and Prim’s algorithm, the largest 
data structure is the graph representation.  An optimal 
representation, with respect to space, would be the adjacency-
list representation.  However, this involves pointer chasing 
when traversing the list.  The priority queue has been highly 
optimized by various groups over the years.  Unfortunately, 
the update operation is often excluded, as it is not necessary in 
such algorithms as sorting.  The asymptotically optimal implementation that considers the update 
operation is the Fibonacci heap.  Unfortunately this implementation includes large constant factors and 
did not perform well in our experiments. 

The primitive graph matching algorithm poses challenges that resemble challenges in both the 
Floyd-Warshall algorithm and Dijkstra’s algorithm.  As in the Floyd-Warshall algorithm, each breadth 
first search to find an augmenting path could examine any part or the entire input graph.  Recall that 
the Floyd-Warshall algorithm requires updating the entire graph at each step.  Unlike the Floyd-
Warshall algorithm, tiling and recursion cannot be applied, even with clever reordering, since the 
search cannot be limited to a small part of the graph and still find a maximal matching for the entire 
graph.  We also have the situation as in Dijkstra’s algorithm where the size of the graph representation 
can affect performance and, although optimal with respect to size, the adjacency list representation 
could cause a degradation of cache performance due to pointer chasing when traversing the list. 

The model that we use in this paper is that of a uniprocessor, cache-based system.  We refer to the 
cache closest to the processor as L1 with size C1, and subsequent levels as Li with size Ci.  Throughout 
this paper we refer to the amount of processor-memory traffic.  This is defined as the amount of traffic 
between the last level of the memory hierarchy that is smaller than the problem size and the first level 
of the memory hierarchy that is larger than or equal to the problem size.  In most cases we refer to 
these as cache and memory respectively.  Finally, we assume an internal TLB with a fixed number of 
entries. 

We use four different architectures for our experiments.  The Pentium III Xeon running Windows 
2000 is a 700 MHz, 4 processor shared memory machine with 4 GB of main memory.  Each processor 
has 32 KB of level-1 data cache and 1 MB of level-2 cache on-chip.  The level-1 cache is 4-way set 
associative with 32 B lines and the level-2 cache is 8-way set associative with 32 B lines.  The 
UltraSPARC III machine is a 750 MHz SUN Blade 1000 shared memory machine running Solaris 8.  
It has 2 processors and 1 GB of main memory.  Each processor has 64 KB of level-1 data cache and 8 
MB of level-2 cache.  The level-1 cache is 4-way set associative with 32 B lines and the level-2 cache 
is direct mapped with 64 B lines.  The MIPS machine is a 300 MHz R12000, 64 processor, shared 
memory machine with 16 GB of main memory.  Each processor has 32 KB of level-1 data cache and 8 
MB of level-2 cache.  The level-1 cache is 2-way set associative with 32 B lines and the level-2 cache 
is direct mapped with 64 B lines.  The Alpha 21264 is a 500 MHz uniprocessor machine with 512 MB 
of main memory.  It has 64 KB of level-1 data cache and 4 MB of level-2 cache.  The level-1 cache is 
2-way set associative with 64 B lines and the level-2 cache is direct mapped with 64 B lines.  It also 

kth row

kth column

(i,j)th element

Dk+1
(i,j) = min{Dk

(i,j), Dk
(i,k)+Dk

(k,j)}
 

Figure 4: kth iteration of outer loop 
in Floyd-Warshall 
Algorithm 
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has an 8 element fully-associative victim cache.  All experiments are run on a uniprocessor or on a 
single node of a multiprocessor system.  Unless otherwise specified simulations are performed using 
the SimpleScalar simulator with a 16 KB, 4-way set associative level-1 data cache and a 256 KB, 8-
way set associative level-2 cache. 

 
2.4. Related Work 

 
A number of groups have done research in the area of cache performance analysis and 

optimizations in recent years.  Detailed cache models have been developed by Weikle, McKee, and 
Wulf in [35] and Sen and Chatterjee in[31].  XOR-based data layouts to eliminate cache misses have 
been explored by Valero and others in [13].  Data layouts for improving cache performance of 
embedded processor applications have been explored in [10]. 

A number of papers have discussed the optimization of specific dense linear algebra problems with 
respect to cache performance.  Whaley and others discuss optimizing the widely used Basic Linear 
Algebra Subroutines (BLAS) in [36].  Chatterjee, et. al. discuss layout optimizations for a suite of 
dense matrix kernels in [5].  Frigo and others discuss the cache performance of cache oblivious 
algorithms for matrix transpose, FFT, and sorting in [12].  Park and Prasanna discuss dynamic data 
remapping to improve cache performance for the DFT in [23].  One characteristic that all these 
problems share is a very regular memory accesses that are known at compile time. 

Another area that has been studied is the area of compiler optimizations (see for example [27]).  
Optimizing blocked algorithms has been extensively studied (see for example [18]).  The SUIF 
compiler framework includes a large set of libraries including libraries for performing data 
dependence analysis and loop transformations.  In this context, it is important to note that SUIF does 
not handle the data dependences present in the Floyd-Warshall algorithm in a manner that improves 
the processor-memory traffic.  It will not perform the transformations discussed in Section 3 without 
user intervention [9]. 

Although much of the focus of cache optimization has been on dense linear algebra problems, 
there has been some work that focuses on irregular data structures.  Chilimbi et. al. discusses making 
pointer-based data structures cache-conscious in [6].  He focuses on providing structure layouts to 
make tree structures cache-conscious.  LaMarca and Ladner developed analytical models and showed 
simulation results predicting the number of cache misses for the heap in [19].  However, the 
predictions they made were for an isolated heap, and the model they used was the hold model, in 
which the heap is static for the majority of operations.  In our work, we consider Dijkstra’s algorithm 
and Prim’s algorithm in which the heap is very dynamic.  In both Dijkstra’s algorithm and Prim’s 
algorithm O(N) Extract-Mins are performed and O(E) Updates are performed.  Finally in [30], Sanders 
discusses a highly optimized heap with respect to cache performance.  He shows significant 
performance improvement using his sequential heap.  The sequential heap does support Insert and 
Delete-min very efficiently, however the Update operation is not supported. 

In the presence of the Update operation, the asymptotically optimal implementation of the priority 
queue, with respect to time complexity, is the Fibonacci heap.  This implementation performs 
O(N*lg(N) + E) operations in both Dijkstra’s algorithm and Prim’s algorithm.  In our experiments the 
large constant factors present in the Fibonacci heap caused it to perform very poorly.  For this reason, 
we focus our work on the graph representation and the interaction between the graph representation 
and the priority queue. 

In [34],Venkataraman, et. al. present a tiled implementation of the Floyd-Warshall algorithm that 
is essentially the same as the tiled implementation shown in this paper.  In this paper, we consider a 
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wider range of architectures and also analyze the cache performance with respect to processor memory 
traffic.  We also consider data layouts to avoid conflict misses in the cache, which is not discussed in 
[34].  Due to the fact that we use a blocked data layout we are able to relax the constraint that the 
blocking factor should be a multiple of the number of elements that fit into a cache line.  This allows 
us to use a larger block size and show more speedup.  In [34], they derive an upper bound on 
achievable speed-up of 2 for state-of-the-art architectures.  Our optimizations lead to more than a 6x 
improvement in performance on three different state-of-the-art architectures. 

We have recently published work on the Floyd-Warshall algorithm in [25] that showed a 2x 
improvement using the Unidirectional Space Time Representation.  Compared with [25], this paper 
represents a new approach to optimizing the Floyd-Warshall algorithm, namely recursion and tiling, 
which gives up to an additional 3x improvement in execution time.  Further, we expand our scope of 
algorithms to include Dijkstra’s algorithm for the single source shortest path problem, Prim’s 
algorithm for the minimum spanning tree problem, and graph matching. 

 
3. Optimizing FW 

 
In this section we address the challenges of the Floyd-Warshall algorithm.  In Section 3.1 we 

introduce and prove the correctness of a recursive implementation for the Floyd-Warshall algorithm.  
We analyze the cache performance and show experimental results for this implementation compared 
with the baseline.  We also show that by tuning the recursive algorithm to the cache size, we can 
improve its performance by up to 2x.  In Section 3.2, we perform some analysis and discuss the impact 
of data layout on cache performance in the context of a tiled implementation of the Floyd-Warshall 
algorithm.  Finally, in Section 3.3, we address the issue of data layout for both the tiled 
implementation and the recursive implementation. 

Throughout this section we make the following assumptions.  We assume a directed graph with N 
vertices and E edges.  We assume the cache model described in Section 2.3, where Ci < N2 for some i 
and the TLB size is much less than N.  To experimentally validate our approaches and their analysis, 
the actual problem sizes that we are working with are between 1024 and 4096 nodes (1024 ≤ N ≤ 
4096).  Each data element is 8 bytes.  Many processors currently on the market have in the range of 16 
to 64 KB of level-1 cache and between 256 KB and 4 MB of level-2 cache.  Many processors have a 
TLB with approximately 64 entries and a page size of 4 to 8 KB. 

In [15], it was shown that the lower bound on processor-memory traffic was Ω(N3/ C ) for the 
usual implementation of matrix multiply.  By examining the data dependence graphs for both matrix 
multiplication and the Floyd-Warshall algorithm, it can be shown that matrix multiplication reduces to 
the Floyd-Warshall algorithm with respect to processor-memory traffic.  Therefore, we have the 
following: 

Lemma 3.1:  The lower bound on processor-memory traffic for the Floyd-Warshall algorithm, 
given a fixed cache size C, is Ω(N3/ C ), where N is the number of vertices in the input graph. 

 
3.1. A Recursive Implementation of FW 

 
As stated earlier, recursive implementations have recently been used to increase cache 

performance.  It was stated in [11] that recursive implementations perform automatic blocking at every 
level of the memory hierarchy.  To the authors’ knowledge, there does not exist a recursive 
implementation of the Floyd-Warshall algorithm.  The reason for this, is that the Floyd-Warshall 
algorithm not only contains all the dependences present in ordinary matrix multiplication, but also 
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additional dependences that can not be satisfied by 
the simple recursive implementation of matrix 
multiply.  What is shown here is a novel recursive 
implementation of the Floyd-Warshall algorithm.  
We also prove the correctness of the 
implementation and show analytically that it reaches 
the asymptotically optimal amount of processor 
memory traffic. 

In order to design a recursive implementation of 
the Floyd-Warshall algorithm, first examine the 
standard implementation when applied to a 2x2 
matrix.  The standard implementation loops over the 
variables k, i, and j from 1 to N.  When the 2x2 case 
is unrolled we have the code shown in Figure 5.  
Notice that 8 calls are made to the min() operation 
and each call requires 3 data values from the matrix.  
This is converted into a recursive program by 
replacing the call to the min() function with a 
recursive call.  Instead of passing 3 data values, we 
pass 3 sub-matrices corresponding to quadrants of 
the input matrix.  This code is shown in Figure 6.  
The initial call to the recursive algorithm passes the 
entire input matrix as each argument.  Subsequent 
calls pass quadrants of their input arguments as 
shown in Figure 6.  The code similar to Figure 5 
calling the min() operation is used as the base case 
for when the input matrices are of size 2x2. 

In order to complete the proof of the correctness 
of the recursive implementation of the Floyd-
Warshall algorithm we need the following claim. 

Claim 1:  When computing the following 
equation it is sufficient for the correctness of the 
Floyd-Warshall algorithm that 1’ −≥ kk . 
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using 1’ −≥ kk  will be ≤ the value computed using 
k-1.  Since no values are used that are not 
representative of paths, there exists a path from the 
ith vertex to the jth vertex of cost given by Equation 1.  Also, since the goal of the Floyd-Warshall 
algorithm is to find the shortest path, Equation 1 will give the correct final result. � 

As a final note, this does not claim that Equation 1 computes the shortest path from the ith vertex to 
the jth vertex using vertices up to ’k .  It merely computes a path from the ith vertex to the jth vertex that 

Floyd-Warshall-2b2-Unrolled(W) 
 
2. D(0) ← W 

3. d11
(1) ← min(d11

(0), d11
(0) + d11

(0)) 
4. d12

(1) ← min(d12
(0), d11

(0) + d12
(0)) 

5. d21
(1) ← min(d21

(0), d21
(0) + d11

(0)) 
6. d22

(1) ← min(d22
(0), d21

(0) + d12
(0)) 

7. d22
(2) ← min(d22

(1), d22
(1) + d22

(1)) 
8. d21

(2) ← min(d21
(1), d22

(1) + d21
(1)) 

9. d12
(2) ← min(d12

(1), d12
(1) + d22

(1)) 
10. d11

(2) ← min(d11
(1), d12

(1) + d21
(1)) 

11. return D(2) 

Figure 5:  Pseudo code for the 2x2 unrolled 
version of the Floyd-Warshall 
algorithm 

Floyd-Warshall-Recursive(A, B, C) 
 
1. if (not base case) { 
2. A11 ← FWR(A11, B11, C11); 
3. A12 ← FWR(A12, B11, C12); 
4. A21 ← FWR(A21, B21, C11); 
5. A22 ← FWR(A22, B21, C12); 
6. A22 ← FWR(A22, B22, C22); 
7. A21 ← FWR(A21, B22, C21); 
8. A12 ← FWR(A12, B12, C22); 
9. A11 ← FWR(A11, B12, C21); 
10. } 
11. else { 
12. /* run base case */ 
13. } 
 
14. return A 

Figure 6:  Pseudo code for the recursive 
version of the Floyd-Warshall 
algorithm 
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is less than or equal in cost to the shortest path from the ith vertex to the jth vertex using vertices up to 
k-1. 

Theorem 3.1:  The recursive implementation of the Floyd-Warshall algorithm detailed above 
satisfies the dependences given by Equation 1 and correctly computes the transitive closure of 
the input graph. 
Proof: 
By definition the straightforward implementation of the Floyd-Warshall algorithm computes the 

outer product of the input matrix with addition replaced by minimum and multiplication replaced by 
addition.  Subsequently, this is referred to as the FW outer product.  Also, for the sake of simplicity, 
assume that the problem size (N) is a power of 2. 

Base case: 
When the number of vertices is equal to 2, the recursive implementation is identical to the original 

implementation of the Floyd-Warshall algorithm given in Figure 5. 
Induction Step: 
Assume that the recursive implementation correctly computes the FW outer product for problem 

sizes up to N/2.  Then, for a problem of size N, the 8 recursive calls shown in Figure 6 will be made.   
The first call, step 1, passes the Northwest quadrant as each argument.  By assumption, this will 

correctly compute the Northwest quadrant of DN/2.  In other words, the shortest path will be found 
from i to j with all intermediate vertices in the set 1 to k, where i, j, and k are in the set 1 to N/2. 

The second call, step 2, computes the Northeast quadrants of DN/2.  By Claim 1, we can use the 
data from the Northwest quadrant of DN/2 instead of Dk-1.  This step finds the shortest path from i to j 
with all intermediate vertices in the set 1 to k, where i and k are in the set 1 to N/2 and j is in the set 
N/2 + 1 to N. 

In the same fashion, the third and fourth calls complete the computation of DN/2 and after the first 
four recursive calls we have correctly computed the shortest path from from i to j with all intermediate 
vertices in the set 1 to k, where i and j are in the set 1 to N and k is in the set 1 to N/2. 

The second set of four recursive calls works in the same way that the first set did and complete the 
computation of DN, the last three using result from other quadrants of DN instead of Dk-1 by Claim 1.  
In this way, we correctly compute the shortest path from i to j, and by induction the recursive 
implementation of the Floyd-Warshall algorithm is correct for all N, where N is a power of 2. � 

Theorem 3.2:  The recursive implementation reduces the processor-memory traffic by a factor 
of B , where ( )CB Ο= . 
Proof: 
Note that the running time of this algorithm is given by 

( ) )(
2

*8 3N
N

TNT Θ=




=  

Define the amount of processor memory traffic by the function D(x).  Without considering cache, 
the function behaves exactly as the running time. 

( ) )(
2

*8 3N
N

DND Θ=




=  

Consider the problem after k recursive calls.  At this point the problem size is N/2k.  There exists 
some k such that N/2k = ( )CΟ , where C = cache size.  For simplicity we set B = N/2k. At this point, all 
data will fit in the cache and no further traffic will occur for recursive calls below this point.  
Therefore: 

2 

3 
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( ) ( )2BOBD =  
By combining Equation 3 and Equation 4 it can be shown that: 

( ) ( ) )(*
3

3

3

B

N
OBD

B

N
ND ==  

Therefore, the processor-memory traffic is reduced by a factor of B. � 
Theorem 3.3:  The recursive implementation reduces the traffic between the ith and the (i-1)th 
level of cache by a factor of Bi at each level of the memory hierarchy, where ( )ii CB Ο= . 

Proof: 
Note first of all, that no tuning was assumed when calculating the amount of processor-memory 

traffic in the proof of Theorem 3.2.  Namely, Equation 5 holds for any N and any B where ( )CB Ο= . 
In order to prove Theorem 3.3, first consider the entire problem and the traffic between main 

memory and the mth level of cache (size Cm).  By Theorem 3.2, the traffic will be reduced by Bm where 
( )mm CB Ο= .  Next consider each problem of size Bm and the traffic between the mth level of cache and 

the (m-1)th level of cache (size Cm-1).  By replacing N in Theorem 3.2 by Bm, it can be shown that this 
traffic is reduced by a factor of Bm-1 where ( )11 −− Ο= mm CB . 

This simple extension of Theorem 3.2 can be done for each level of the memory hierarchy, and 
therefore the processor-memory traffic between the ith and the (i-1)th level of cache will be reduced by 
a factor of Bi, where ( )ii CB Ο= . � 

Finally, recall from Lemma 3.1 that the lower bound on processor-memory traffic for the Floyd-
Warshall algorithm is given by Ω(N3/ C ), where C is the cache size.  Also recall from Theorem 3.2 
the upper bound on processor-memory traffic that was shown for the recursive implementation was 
O(N3/B), where B2 = O(C).  Given this information we have the following Theorem. 

Theorem 3.4: Our recursive implementation is asymptotically optimal among all 
implementations of the Floyd-Warshall algorithm with respect to processor-memory traffic. 
As a final note in the recursive implementation, we show up to 2x improvement when we set the 

base case such that the base case would utilize more of the cache closest to the processor.  Once we 
reached a problem size B, where B2 is on the order of the cache size, we execute a standard iterative 
implementation of the Floyd-Warshall algorithm.  This improvement varied from one machine to the 
other and is due to the decrease in the overhead of recursion.  It can be shown that the number of 
recursive calls in the recursive algorithm is reduced by a factor of B3 when we stop the recursion at a 
problem of size B.  A comparison of full recursion and recursion stopped at a larger block size showed 
a 30% improvement on the Pentium III and a 2x improvement on the UltraSPARC III. 

In order to improve performance, B 2 must be chosen to be on the order of the L1 cache size.  The 
simplest and possibly the most accurate method of choosing B is to experiment with various tile sizes.  
This is the method that the Automatically Tuned Linear Algebra Subroutines (ATLAS) project 
employs [36].  However, it is beneficial to find an estimate of the optimal tile size.  A block size 
selection heuristic for finding this estimate is discussed in [25], and outlined here. 

• Use the 2:1 rule of thumb from [24] to adjust the cache size to that of an equivalent 4-way set 
associative cache.  This minimizes conflict misses since our working set consists of 3 tiles of 
data.  Self-interference misses are eliminated by the data being in contiguous locations within 
each tile and cross interference misses are eliminated by the associativity. 

• Choose B by Equation 6, where d is the size of one element and C is the adjusted cache size.  
This minimizes capacity misses. 

5 
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CdB =**3 2  
The baseline we use for our experiments is a 

straightforward implementation of the Floyd-Warshall 
algorithm.  It was shown in [25] that standard optimizations 
yield limited performance increases on most machines.  The 
Simulation results in Table 1 for the recursive 
implementation show a 30% decrease in level-1 cache 
misses and a 2x decrease in level-2 cache misses for 
problem sizes of 1024 and 2048.  In order to verify the 
improvements on real machines, we compare the recursive 
implementation of the Floyd-Warshall algorithm with the 
baseline.  For these experiments the best block size was 
found experimentally.  The results show more than 10x 
improvement in overall execution time on the MIPS, 
roughly than 7x improvement on the Pentium III and the 
Alpha, and more than 2x improvement on the UltraSPARC 
III.  These results are shown in Figure 7.  Differences in 
performance gains between machines are expected, due to 
the wide variance in cache parameters and miss penalties. 

 
3.2. A Tiled Implementation for FW 

 
Compiler groups have used tiling to achieve higher data 

reuse in looped code.  Unfortunately, the data dependences 
from one k-loop to the next in the Floyd-Warshall 
algorithm make it impossible for current compilers, 
including research compilers, to perform 3 levels of tiling 
[9].  In order to tile the outermost loop we must cleverly 
reorder the tiles in such a way that satisfies data dependences from one k-loop to the next as well as 
within each k-loop. 

Recall that Claim 1 stated that when computing Equation 1, it was sufficient that 1’ −≥ kk .  
Consider a special case of Claim 1 when we restrict ’k  such that 1’1 −+≤≤− Bkkk , where B is the 
blocking factor.  This special case leads to the following tiled implementation of the Floyd-Warshall 
algorithm.  This tiled implementation has also been derived in [34] using an alternate analysis.  A brief 
description of the algorithm is as follows.  Tile the problem into BxB 
tiles.  During the kth block iteration, first update the (k,k)th tile, then the 
remainder of the  kth row and kth column, then the rest of the matrix.  
Figure 8 shows an example matrix tiled into a 4x4 matrix of blocks.  
Each block is of size BxB.  During each outermost loop, we would 
update first the black tile representing the (k,k)th tile, then the grey tiles, 
then the white tiles.  In this way we satisfy all dependences from each 
kth loop to the next as well as all dependences within each kth loop. 
 
3.2.1. Analysis.  In [34], an upper bound for any cache optimized 
Floyd-Warshall algorithm was shown, however, no formal analysis 
with respect to traffic was shown for their tiled implementation.  In fact 

Data level-1 cache misses 
N Baseline Recursive  

1024 0.806 0.546  
2048 6.442 4.362 109 

 
Data level-2 cache misses 

N Baseline Recursive  
1024 0.537 0.280  
2048 4.294 2.232 106 

Table 1: Simulation result  

 

Figure 8: Tiled 
implementation of FW 
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Figure 7: Speedup results for the 
recursive implementation of 
the Floyd-Warshall algorithm 
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our results show speed-ups significantly larger than the upper bound shown in [34].  The following 
analysis is performed for the tiled implementation in the context of the model discussed in Section 2. 

Theorem 3.5:  The proposed tiled implementation of the Floyd-Warshall algorithm reduces the 
processor-memory traffic by a factor of B where B2 is on the order of the cache size. 
Proof sketch:  At each block we perform B3 operations.  

There are N/B x N/B blocks in the array and we pass 
through each block N/B times.  This gives us a total of N3 
operations.  In order to process each block we require only 
3*B2 elements.  This gives us a total of N3/B total 
processor-memory traffic. � 

Given this upper bound on traffic for the tiled 
implementation and the lower bound shown in Lemma 3.1, 
we have the following. 

Theorem 3.6: The proposed tiled implementation is 
asymptotically optimal among all implementations of 
the Floyd-Warshall algorithm with respect to processor-
memory traffic. 

 
3.2.2. Optimizing the Tiled Implementation.  It has been 
shown by a number of groups that data layouts tuned to the 
access pattern can significantly impact cache performance 
and improve overall execution time.  In order to match the 
access pattern of the tiled implementation we use the Block 
Data Layout (BDL).  The BDL is a two level mapping that 
maps a tile of data, instead of a row, into contiguous 
memory.  By setting the block size equal to the tile size in 
the tiled computation, the data layout will exactly match the 
data access pattern.  By using this data layout we can also 
relax the restriction on block size stated in [34] that the 
block size should be a multiple of the number of elements in 
a cache block. 

As mentioned in Section 3.1, the best block size should 
be found experimentally, and the block size selection 
heuristic discussed in Section 3.1 can be used to give a 
rough bound on the best block size.  However, when 
implementing the tiled implementation, it is also important 
to note that the search space must take into account each 
level of cache as well as the size of the TLB.  Given these 
various solutions for B the search space should be expanded 
accordingly.  In [34], only the level-1 cache is considered, 
however, with an on-chip level-2 cache often the best block 
size is larger than the level-1 cache.  Table 2 shows the 
result of comparing the tiled implementation using a row-
wise layout and the block size selection used in [34] with 
the tiled implementation using the block data layout and 

our block size selection.  Simulation results show that the 

Data level-1 cache misses 
N Baseline Tiled  

1024 0.806 0.542  
2048 6.442 4.326 109 

 
Data level-2 cache misses 
N Baseline Tiled  

1024 0.537 0.276  
2048 4.294 2.195 106 

Table 3: Simulation result 
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Figure 9: Speedup results for the 
tiled implementation of the 
Floyd-Warshall algorithm 

Data level-1 cache performance 
 Row-wise BDL  

Misses 0.312 0.276 109 
Miss Rate 4.82% 4.28%  

 
Data level-2 cache performance 

 Row-wise BDL  
Misses 91.43 7.45 106 

Miss Rate 29.11% 2.68%  
 

Execution time 
 Row-wise BDL  

SUN 283.72 201.38  
P III 124.2 97.62 (sec) 

N = 2048 

Table 2: Comparison result 
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block size selection used in [34] optimizes the level-1 cache misses, but incurs a level-2 cache miss 
ratio of almost 30%.  The Block Data Layout with a larger block size has roughly equal level-1 cache 
performance and far better level-2 cache performance.  The execution times for these implementations 
show a 20% to 30% improvement by the Block Data Layout over the row-wise data layout. 

A comparison for the tiled implementation using the Block Data Layout with the best compiler 
optimized implementation was also performed.  Simulation results for this are shown in Table 3.  
These results show a 2x improvement in level-2 cache misses and a 30% improvement in level-1 cache 
misses.  Experimental results show a 10x improvement in execution time for the Alpha, better than 7x 
improvement for the Pentium III and the MIPS and roughly a 3x improvement for the UltraSPARC III 
(See Figure 9). 

 
3.3. Data Layout Issues 

 
It is also important to consider data layout when implementing 

any algorithm.  It has been shown by a number of groups that data 
layouts tuned to the data access pattern of the algorithm can reduce 
both TLB and cache misses (see for example [5], [23], [25]).  In the 
case of the recursive algorithm, the access pattern is matched by a 
Z-Morton data layout.  The Z-Morton ordering is a recursive layout 
defined as follows:  Divide the original matrix into 4 quadrants and 
lay these tiles in memory in the order NW, NE, SW, SE.  
Recursively divide each quadrant until a limiting condition is reach.  
This smallest tile is typically laid out in either row or column major 
fashion (see Figure 10).  See [5] for a more formal definition of the 
Morton ordering. 

In the case of the tiled implementation, the Block Data Layout 
(BDL) matches the access pattern.  Recall from Section 3.2.2 that 
the BDL is a two level mapping that maps a tile of data, instead of a 
row, into contiguous memory.  These blocks are laid out row-wise 
in the matrix and data is laid out row-wise within the block (see 
Figure 11).  By setting the block size equal to the tile size in the 
tiled computation, the data layout will exactly match the data access 
pattern. 

We experimented with both of these data layouts 
for each of the implementations.  The results are 
shown in Tables 4 and 5.  All of the execution times 
were within 15% of each other with the Z-Morton data 
layout winning slightly for the recursive 
implementation and the BDL winning slightly for the 
tiled implementation.  The fact that the Z-Morton was 
slightly better for the recursive implementation and 
likewise the BDL for the tiled implementation was 
exactly as expected, since they match the data access 
pattern most closely.  The closeness of the results is 
mostly likely due to the fact that the majority of the 
data reuse is within the final block.  Since both of these 

Recursive Implementation 
N Morton 

Layout 
Block Data 

Layout 
 

2048 103.48 111.42  
4096 820.45 878.89 (sec) 

 
Tiled Implementation 

N Morton 
Layout 

Block Data 
Layout 

 

2048 99.25 99.39  
4096 779.53 780.41 (sec) 

Table 4: Pentium III results 

1 page/block

Blocks laid out 
row-wise.

Elements laid 
out row-wise 
inside blocks.

√N

Figure 10: The Block Data 
Layout 

I II

III IV

1 2 5 6
3 4 7 8
9 10 13 14

16151211

17 18 21 22
19 20 23 24
25 26 29 30

32312827
49 50 53 54
51 52 55 56
57 58 61 62

64636059

33 34 37 38
35 36 39 40

41 42 45 46
48474443

Figure 11: The Morton Layout 

WallacJR
80



 16

data layouts have the final block laid out in contiguous 
memory locations, they perform equally well. 

It is also important to note that the Z-Morton data 
layout has a very complex index computation, which 
can only be hidden in a recursive algorithm.  The BDL 
has a very simple index computation in comparison.  
Therefore it is significant to show that for non-
recursive algorithms, the BDL performs just as well or 
better, while avoiding the overhead of a complex index 
computation. 

 
4. Optimizing the Single-Source Shortest Path 

Problem 
 
Due to the structure of Dijkstra’s algorithm neither tiling nor recursion can be directly applied.  

Much work has been done to generate cache friendly implementations of the heap, however, the 
update operation has not been considered in great detail (see section 2.3).  In the presence of the 
update operation, the Fibonacci heap represents the 
asymptotically optimal implementation with respect to time 
complexity.  Unfortunately, in the problem sizes being 
considered, the performance of the Fibonacci heap was very 
poor compared with even a straightforward implementation 
of the heap. 

As mentioned in Section 2, the largest data structure is 
the graph representation.  This structure will be of size 
O(N+E), where E can be as large as N2 for dense graphs.  In 
contrast, the priority queue, the other data structure 
involved, will be of size O(N).  Also note that each element 
in the graph representation will be accessed exactly once.  
For each node extracted from the priority queue, the 
corresponding adjacent nodes are read and updated.  All 
nodes will be extracted from the priority queue and no node 
can be extracted more than once.  Therefore, the traffic as a 
result of the graph representation will be proportional to its 
size and the amount of prefetching possible.  For these 
reasons, we focus on providing an optimization to the graph 
representation based on the data access pattern. 

In the context of the graph representation, we can take 
advantage of two things.  The first is prefetching.  Modern 
processors perform aggressive prefetching in order to hide 
memory latencies.  The second is to optimize at the cache 
line level.  In this case, a single miss would bring in multiple 
elements that would subsequently be accessed and result in 
cache hits.  In this way cache pollution is minimized. 

There are two commonly used graph representations.  
The adjacency matrix is an NxN matrix, where the (i,j)th 
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Recursive Implementation 
N Morton 

Layout 
Block Data 

Layout 
 

2048 307.33 311.26  
4096 2460.53 2488.88 (sec) 

 
Tiled Implementation 

N Morton 
Layout 

Block Data 
Layout 

 

2048 278.48 271.35  
4096 2248.20 2184.09 (sec) 

Table 5: UltraSPARC III results 
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element of the matrix is the cost from the ith node to the jth 
node of the graph.  This representation is of size O(N2).  It 
has the nice property that elements are accessed in a 
contiguous fashion and therefore, cache pollution will be 
minimized and prefetching will be maximized.  However, 
for sparse graphs, the size of this representation is 
inefficient.  The adjacency list representation is a pointer-
based representation where a list of adjacent nodes is stored for each node in the graph.  Each node in 
the list includes the cost of the edge from the given node to the adjacent node.  This representation has 
the property of being of optimal size for all graphs, namely O(N+E).  However, the fact that it is 
pointer based, leads to cache pollution and difficulties in prefetching.  See [7] or [14] for more details 
regarding these common graph representations. 

Consider a simple combination of these two representations [28].  For each node in the graph, we 
have an array of adjacent nodes.  The size of each array is exactly the out-degree of the corresponding 
node.  There are simple methods to construct this representation when the out-degree is not known 
until run time.  For this representation, the elements at each point in the array look similar to the 
elements stored in the adjacency list.  Each element must 
store both the cost of the path and the index of the adjacent 
node.  Since the size of each array is exactly the out-degree of 
the corresponding node, the size of this representation is 
O(N+E).  This makes it optimal with respect to size.  Also, 
since the elements are stored in arrays and therefore in 
contiguous memory locations, the cache pollution will be 
minimized and prefetching will be maximized.  Subsequently 
this representation will be referred to as the adjacency array 
representation.  This graph representation is essentially the 
same as a graph representation discussed in [28]. 

In order to demonstrate the performance improvements 
using our graph representation, we performed simulations as 
well as experiments on two different machines, the Pentium 
III and UltraSPARC III, for Dijkstra’s algorithm.  The 
simulations show approximately 20% reduction in level-1 
cache misses and a 2x reduction in the number of level-2 
cache misses (see Table 6).  This is due to the reduction in 
cache pollution and increase in prefetching that was 
predicted.  Due to memory limitations, experiments for all 
graph densities were only performed at small problem sizes, 
namely 2K nodes and 4K nodes.  These results demonstrate 
improved performance using the adjacency array for all graph 
densities and are shown in Figure 12.  Experiments on larger 
problem sizes (16K nodes up to 64K nodes) at a graph density 
of 10% are shown in Figure 13 and again are limited by the 
size of main memory.  All of the results show a 2x 
improvement for Dijkstra’s algorithm on the Pentium III and 
a 20% improvement on the UltraSPARC III.  This significant 
difference in performance is due primarily to the difference in 
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the memory hierarchy of these two architectures. 
A second comparison to observe is between the Floyd-Warshall algorithm and Dijkstra’s algorithm 

for sparse graphs, i.e. edge densities less than 20%.  For these graphs, Dijkstra’s algorithm is more 
efficient for the all pairs shortest path problem.  By using the adjacency array representation of the 
graph in Dijkstra’s algorithm, the range of graphs over which Dijkstra’s algorithm outperforms the 
Floyd-Warshall algorithm can be increased.  Figures 14 & 15 show a comparison of the best Floyd-
Warshall algorithm with Dijkstra’s algorithm for sparse graphs.  On the Pentium III, we were able to 
increase the range for Dijkstra’s algorithm from densities up to 5% to densities up to 20%.  On the 
UltraSPARC III we increased the range from densities up to 20% to densities up to 30%. 

 
5. Optimizing the Minimum Spanning Tree Problem 

 
As mentioned in Section 2, Prim’s algorithm for 

minimum spanning tree is very similar to Dijkstra’s 
algorithm for the single source shortest path problem.  In 
fact they are identical with respect to the access pattern, the 

difference being only in how the update operation is 
performed.  In Dijkstra’s algorithm nodes in the priority 
queue are updated with their distance from the source node.  
In Prim’s algorithm nodes are updated with the shortest 
distance from any node already removed from the priority 
queue.  For this reason the optimizations applicable to 
Dijkstra’s algorithm are also applicable to Prim’s algorithm.  
Figures 16 & 17 show the result of applying the 
optimization to the graph representation discussed in 
Section 4 to Prim’s algorithm.  Recall that this optimization 
replaces the adjacency list graph representation with the 
adjacency array graph representation.  This representation 
matches the streaming access that is made to the graph and 
in this way minimizes cache pollution and maximizes the 
prefetching ability of the processor. 

Our results show a 2x improvement on the Pentium III 
and 20% for the UltraSPARC III.  This performance 
improvement was shown in the smaller problem sizes of 2K 
and 4K nodes where experiments were done for densities 
ranging from 10% to 90% as well as the large problem sizes 
of 16K nodes up to 64K nodes with densities of 10%.  
Simulations were also performed to verify improved cache 
performance.  These results are shown in Table 7.  They 
show approximately a 20% reduction in the number of 
level-1 cache misses and a 2x reduction in the number of 
level-2 cache misses.  As expected, all of the results are very 
close to the results shown for Dijkstra’s algorithm. 

 
6. Optimizing Bipartite Graph Matching 

 

Cache misses 
 Linked-List Adj. Array 

Data level 1 7.19 5.77 
Data level 2 3.59 1.82 
(Input: 16K nodes, 0.1 density)       (106) 

Table 7: Simulation results 

0

0.5

1

1.5

2

2.5

3

0 0.5 1

Density

S
p

ee
d

u
p

Pentium, 2048 Pentium, 4096
UltraSPARC, 2048 UltraSPARC, 4096

Figure 16: Speedup results for Prim’s 
algorithm 

0

0.5

1

1.5

2

2.5

3

0 20000 40000 60000 80000

N

S
p

ee
d

u
p

Pentium UltraSPARC

Figure 17: Speedup results for Prim’s 
algorithm 

WallacJR
83



 19

In this section, we utilize the ideas and techniques developed in the previous sections to optimize 
another basic graph algorithm, namely graph matching for bipartite graphs.  As discussed in Section 2, 
this algorithm shows similarities to Dijkstra’s algorithm with respect to memory access in each 
iteration and therefore tiling and recursion cannot be easily applied. 

The first optimization that is applied is to use the adjacency arrays instead of the adjacency list.  In 
order to find an augmenting path, a breadth first search is performed.  The access pattern will then be 
to access all adjacent nodes to the current node.  This is the same access pattern as was displayed in 
both Dijkstra’s and Prim’s algorithm. 

The second optimization that is applied is intended to reduce the working set size as in tiling or 
recursion.  As mentioned above, neither tiling nor recursion can be directly applied.  What can be done 
is to use tiling to generate a good match as a starting point for the full problem.  In this way the 
amount of work done when examining the complete graph will be reduced.  Furthermore, the work 
done in the tiled steps will be cache friendly if the tiles are chosen appropriately.  In order to 
accomplish this, first divide the graph into sub-graphs, each of which fits into the cache and find the 
local maximal matches.  Then the local matches are combined to form a starting point for the original 
algorithm.  Finally, the algorithm is run on the complete graph, using the match already found as a 
starting point, to find the maximal match. 

The performance of this optimization is largely 
dependant on the structure and density of the graph and the 
partitioning chosen.  Assuming a good partition, the local 
maximal matches will be close to a global maximal match 
for dense graphs due to the large number of edges present in 
each sub-graph.  For sparse graphs, it is difficult to find a 
good local match and more work will be required at the 
global level. 

In order to improve the quality of the match at the local 
level, a very simple partitioning algorithm is employed.  A 
basic description of this algorithm is as follows.  Given a 
bipartite graph, the goal is to partition the edges into two 
groups such that the best match possible is found within 
each group.  In order to accomplish this, as many edges as 
possible should have both end points in the same partition.  
These edges are referred to as internal edges.  Arbitrarily 
partition the vertices into 4 equal partitions.  Count the 
number of edges between each pair of partitions.  Combine 
partitions into two partitions such that as many internal 
edges are created as possible. 

In order to support the quality of the optimization, 
experiments were also performed for a graph in which a 
worst possible graph partitioning was chosen, i.e. no 
matches were found at the local level.  For this case, the 
optimized implementation showed only 10% performance 
degradation.  The majority of experimentation was 
performed using randomly generated graphs in order to 
average out the dependence on graph partitioning.  The 
random graphs were constructed by randomly choosing half 
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of the vertices to be in one partition of the bipartite graph.  
Edges were then created from each vertex in the partition to 
randomly chosen vertices not in the partition. 

As expected, the performance improvement is highly 
dependent on the density of the graph.  This dependence can 
be seen in Figure 18, which shows the speedup vs. graph 
density.  Results ranged from just over 2x for graphs of 10% 
density to over 4x for graphs of 30% density.  In this case, 
the problem size was fixed at 8192 nodes and density was 
limited to 30% by main memory.  The best-case results are 
shown in Figure 19.  For these problems, we designed the 
input graph such that the maximal matching is found in the 
tiled phase and very little work is performed on the 
complete graph.  For these problems, results ranged from 3x 
up to 10x.  The most interesting results are those shown in 
Figure 20.  The input graph in this case was a randomly 
generated graph and the basic graph partitioning algorithm 
was used to improve the match found at the local level.  
The results shown are the average over 10 different random 
input graphs.  The speedup shown is roughly 2x for all 
problem sizes.  We also performed simulations to 
demonstrate cache performance for this case and the results 
are shown in Table 8.  Based on the number of access to the 
level 1 cache, the optimized implementation is performing somewhat less work.  This contributes 
somewhat to the decrease in the number of misses shown.  However, the miss rate is also reduced by 
almost 3x, which indicates that the optimized implementation does improve cache performance 
beyond the amount reduced by the decrease in work. 

 
7. Conclusion 

 
In the course of the research discussed in this paper, we have used the techniques of tiling, 

recursion, and data layout optimization to show improved cache performance both analytically and 
experimentally in the area of graph algorithms.  The recursive implementation of the Floyd-Warshall 
algorithm represents a novel cache-oblivious implementation.  Using this implementation as well as a 
tiled implementation, we have shown more than a 6x improvement in execution time on three different 
architectures as well as analytically showing that both implementations are optimal with respect to 
processor-memory traffic.  We also showed significant performance improvements for Dijkstra’s 
algorithm and Prim’s algorithm using a cache friendly graph representation.  Finally, we applied both 
the cache friendly graph representation and a tiling optimization to the problem of graph matching.  
These optimizations showed a 2x to 3x improvement in execution time for randomly generated graphs 
and up to 10x improvement for graphs well suited to our partitioning algorithm. 

Tiling and recursion are also used as computation decomposition techniques for parallelization. 
Good parallelized code should have minimal communication and sharing between computational 
nodes, thus our pursuit of data locality also benefits parallelization. Our sequential FW 
implementations and matching implementation can easily be transformed into parallel code. 
Computation and data are already decomposed, what need to be added are computation and data 
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DL1 Cache Performance 
 Baseline Optimized 

Accesses 853 578 
Misses 127 32 

Miss Rate 14.86% 5.56% 
(Input: 8K nodes, 0.1 density)           (106) 

Table 8: Simulation results 
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distribution, synchronization and communication primitives. One of our future directions will be to 
implement parallel versions of the Floyd-Warshall algorithm and matching algorithm based on the 
work presented in this paper. 

Another area for future work is the optimization of the priority queue in Dijkstra’s algorithm and 
Prim’s algorithm.  As mentioned, the Fibonacci heap is the asymptotically optimal implementation for 
priority queue in the presence of the update operation, however, due to large constant factors, it 
performed poorly in experiments. 

This work is part of the Algorithms for Data IntensiVe Applications on Intelligent and Smart 
MemORies (ADVISOR) Project at USC [1].  In this project we focus on developing algorithmic 
design techniques for mapping applications to architectures.  Through this we understand and create a 
framework for application developers to exploit features of advanced architectures to achieve high 
performance. 
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Abstract 
In this paper we show cache-friendly implementations of 
the Floyd-Warshall algorithm for the All-Pairs Shortest-
Path problem.  We first compare the best commercial 
compiler optimizations available with standard cache-
friendly optimizations and a simple improvement 
involving a block layout, which reduces TLB misses.  We 
show approximately 15% improvements using these 
optimizations.  We also develop a general representation, 
the Unidirectional Space Time Representation, which can 
be used to generate cache-friendly implementations for a 
large class of algorithms.  We show analytically and 
experimentally that this representation can be used to 
minimize level-1 and level-2 cache misses and TLB misses 
and therefore exhibits the best overall performance.  
Using this representation we show a 2x improvement in 
performance with respect to the compiler optimized 
implementation.  Experiments were conducted on Pentium 
III, Alpha, and MIPS R12000 machines using problem 
sizes between 1024 and 2048 vertices.  We used the 
Simplescalar simulator to demonstrate improved cache 
performance. 
 
1. Introduction 

 
The topic of cache performance has been well studied 

in recent years.  It has been clearly shown that the amount 
of processor-memory traffic is the bottleneck for 
achieving high performance in most applications [3, 17].  
While the topic of cache performance has been well 
studied, much of the focus has been on dense linear 
algebra problems, such as matrix multiplication and FFT 
[3, 10, 14, 21].  All of these problems possess very regular 
access patterns that are known at compile time.  In this 
paper, we take a unique approach to this topic by focusing 
on the fundamental irregular problem of transitive 
closure. 

Optimizing cache performance to achieve better 

overall performance is a difficult problem.  Modern 
microprocessors are including deeper and deeper memory 
hierarchies to hide the cost of cache misses.  The 
performance of these deep memory hierarchies has been 
shown to differ significantly from predictions based on a 
single level of cache [16].  Different miss penalties for 
each level of the memory hierarchy as well as the TLB 
also play an important role in the effectiveness of cache-
friendly optimizations.  These miss penalties vary from 
processor to processor and can cause large variations in 
experimental results. 

The All-Pairs Shortest-Path problem (hereafter referred 
to as transitive closure) is a fundamental problem in a 
wide variety of fields, most notably network routing and 
distributed computing.  Transitive closure, as an irregular 
problem, poses unique challenges to improving cache 
performance, challenges that often cannot be handled by 
standard cache-friendly optimizations [8].  The Floyd-
Warshall algorithm involves updating N2 elements at each 
step.  Simple tiling cannot be used to optimize these steps 
due to data dependencies from one step to the next. 

In this paper we develop the Unidirectional Space 
Time Representation (USTR) and show that using this 
representation we can develop cache-friendly 
implementations for a large class of algorithms.  This 
representation is very similar to the space-time 
representation used in systolic array design, which also 
deals with partitioning the space as we do [7].  However, 
such systolic array designs do not have the added 
challenge of dealing with cache conflicts and multiple 
levels of memory hierarchy.  We also show how this 
representation can be used to uniquely face the challenges 
posed by the transitive closure problem.  Using this 
representation we show up to a factor of 2 improvement 
over a state of the art cache-friendly optimization, 
including those available in a research compiler [12]. 

The remainder of this paper is organized as follows:  In 
Section 2 we give the background and briefly summarize 
some related work in the areas of cache optimization and 
compiler optimizations.  In Section 3 we discuss each 
optimization that we consider and give Simplescalar 
results to substantiate our claims.  In Section 4 we present 

* Supported by the US DARPA Data Intensive Systems 
Program under contract F33615-99-1-1483 monitored by 
Wright Patterson Airforce Base and in part by an equipment 
grant from Intel Corporation. 
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experimental data gathered from the three machines we 
used.  In Section 5 we draw conclusions and gives some 
direction for future work. 

 
2. Background and Related Works 

 
In this section we give the background information 

required in our discussion of various optimizations in 
Section 3.  In Section 2.1 we give a brief outline of the 
Floyd-Warshall algorithm.  Those readers comfortable 
with this algorithm can skip this.  In Section 2.2 we 
discuss some of the challenges that are faced in making 
the transitive closure problem cache-friendly.  Finally, in 
Section 2.3 we give some information regarding other 
work in the fields of cache analysis, cache-friendly 
optimizations, and compiler optimizations and how they 
relate to our work. 

 
2.1. The Floyd-Warshall Algorithm 

 
For the sake of discussion, suppose we have a directed 

graph G with N vertices labeled 1 to N and E edges.  The 
Floyd-Warshall algorithm is a dynamic programming 
algorithm, which computes a series of N, NxN matrices 
where Dk is the kth matrix and is defined as follows: Dk

(i,j) 
= shortest path from vertex i to vertex j composed of the 
subset of vertices labeled 1 to k.  The matrix D0 is the 
original graph G.  We can think of the algorithm as 
composed of N steps.  At each kth step, we compute Dk 
using the data from Dk-1 in the manner shown in Figure 
1[6]. 

 
2.2. Challenges 

 
Transitive closure presents a very different set of 

challenges from those present in dense linear algebra 
problems such as matrix multiply and FFT.  In the Floyd-
Warshall algorithm, the operations involved are 
comparison and add operations.  There are no floating-
point operations as in matrix multiply and FFT.  We are 

also faced with dependencies that require us to update the 
entire NxN array Dk before moving on to the (k+1)th step.  
This data dependency from one kth loop to the next 
eliminates the ability of any commercial or research 
compiler to improve data reuse.  We have explored using 
the research compiler SUIF to optimize transitive closure 
and found that the optimization discussed in Section 3.1, 
namely tiling of the i and j loops, is the best it can 
perform without user provided knowledge of the 
algorithm [8].  These challenges mean that although the 
computational complexity of the Floyd-Warshall 
algorithm is O(N3), equivalent to matrix multiply, often 
transitive closure displays much longer running times. 

 
2.3. Related Work 

 
A number of groups have done research in the area of 

cache performance analysis in implementing algorithms 
in recent years.  Detailed cache models have been 
developed by Weikle, McKee, and Wulf in [20] and Sen 
and Chatterjee in [16].  Instead of eliminating cache 
misses, some groups develop methods to tolerate these 
misses.  Multithreading has been discussed as one method 
of accomplishing this.  Kwak and others discuss the 
effects of multithreading on cache performance in [11]. 

A number of papers have discussed the optimization of 
specific problems with respect to cache performance.  The 
majority of these problems are in the area of dense linear 
algebra problems.  Whaley and others discuss optimizing 
the widely used Basic Linear Algebra Subroutines 
(BLAS) in [21].  Chatterjee and Sen discuss a cache 
efficient matrix transpose in [4].  Frigo and others discuss 
the cache performance of cache oblivious algorithms for 
matrix transpose, FFT, and sorting in [9].  Park and 
Prasanna discuss dynamic data remapping to improve 
cache performance for the DFT in [13].  One 
characteristic that these problems share is a very regular 
memory accesses that are known at compile time. 

Another area that has been studied is the area of 
compiler optimizations (see for example [15, 16, 26]).  
Optimizing blocked algorithms has been extensively 
studied (see for example [12]).  The SUIF compiler 
framework includes libraries for performing data 
dependency analysis and loop transformations among 
other things.  In this context, it is important to note that 
SUIF does not handle the data dependencies present in the 
Floyd-Warshall algorithm in a manner that improves the 
processor-memory traffic.  It will perform the tiling 
optimization discussed in Section 3.1; however, it will not 
perform the transformation discussed in Section 3.4 
without user intervention [8]. 

Although much of the focus of cache optimization has 
been on dense linear algebra problems, there has been 
some work that focuses on irregular data structures.  
Chilimbi discusses making pointer-based data structures 

i

j
k

Dk
(i,j) = min[Dk-1

(i,j) , Dk-1
(i,k)+Dk-1

(k,j)]

Figure 1:  kth step of Floyd-Warshall 
Algorithm 
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cache-conscious in [5].  He focuses on providing structure 
layouts and structure definitions to make tree structures 
cache-conscious.  Gao has also looked at optimizations 
for a heap data structures in [18].  The difference between 
this work and ours is that we focus on optimizing an 
algorithm instead of a data structure. 

 
3. Cache-Friendly Optimizations 

 
In this section we explore three different optimizations 

of transitive closure.  In Section 3.1, we show the usual 
implementation of the Floyd-Warshall algorithm, as well 
as a standard compiler technique for optimizing loop 
nests.  We use these throughout the paper as our baseline.  
Section 3.1 also includes many of the definitions and 
assumptions that we use throughout Section 3 for our 
analysis.  In Section 3.2 we show a data layout 
optimization that is used to compliment the compiler 
optimization.  Finally, in Section 3.3 we introduce the 
Unidirectional Space Time Representation and how it can 
be used to generate cache-friendly optimizations.  
Throughout the sections we use result from the 
Simplescalar simulator to verify our analytical analysis.  
We show actual running times of the optimizations on our 
three machines in Section 4. 

 
3.1. Standard Optimization of the Floyd-

Warshall Algorithm (Baseline 
Implementation) 

 
As stated earlier, improving cache performance has 

been well studied in recent years in the area of dense 
linear algebra problems.  Most of the optimizations 
developed deal with dense array structures.  This dense 
array is present in the standard Floyd-Warshall algorithm.  
The purpose of this section is to introduce and analyze the 
baseline implementation as well as a fairly standard 
optimizations to improve cache performance.  This 
optimizations produced less than 20% improvement over 
the baseline.  The baseline that we use throughout our 
discussion is a usual implementation that is compiled 
using the state of the art compiler optimizations available.  
The compilers we used for our experiments were GNU 
C++ (gcc) and Microsoft Visual C++ (MS VC++).  We 
have verified that these compilers do not do loop 
transformation or copying.  They do perform such 
optimizations as inline functions and code reordering to 
hide miss latency. 

In order to simplify the analysis we make a few 
assumptions.  Suppose we have a graph with N vertices.  
The size of the adjacency matrix is then N2.  We are 
interested in optimizing performance as the problem size 
increases; the problem and intermediate data do not fit in 
the cache.  We assume that the cache size is less than N2 
and the TLB is much smaller than N.  We define 

processor-memory traffic as the traffic between the last 
level of the memory hierarchy that cannot contain the 
problem size (referred to as the cache) and the first level 
of the memory hierarchy that can contain the problem 
data (referred to as memory).  On most traditional 
architectures, this would be between the level-2 cache and 
main memory.  We also assume that the problem fits into 
some level of the main memory hierarchy.  To 
experimentally validate our approaches and their analysis, 
the actual problem sizes that we are working with are 
between 1024 and 2048 nodes (1024 ≤ N ≤ 2048).  Each 
data element is 8 bytes.  Many processors currently on the 
market have in the range of 16 to 64 KB of level-1 cache 
and between 256 KB and 4 MB of level-2 cache.  Many 
processors have a TLB with approximately 64 entries and 
a page size of 4 to 8KB.  All of these parameters match 
closely with our assumptions. 

Let us first examine the usual implementation of the 
Floyd-Warshall algorithm.  The basic step (kth loop) in 
this algorithm is to take the outer product of the kth row 
and the kth column and update the entire matrix.  We 
assume the matrix is laid out in row major order.  By 
definition of the algorithm then we are going to update N2 
elements in each kth loop.  Since our cache is strictly less 
than N2, this will generate Θ(N3) total processor-memory 
traffic.  Now suppose we want to update the entire ith row 
during some kth loop.  In the worst case, this could conflict 
exactly with the kth row of the matrix and cause an extra 
O(N) conflict misses for that kth loop.  We also want to 
consider TLB misses.  In order to understand the TLB 
issues, suppose our page size is N*l for some small l, 
possibly less than 1.*  Then the adjacency matrix sits 
inside N/l different pages.  Each one of these must be 
accessed during every kth loop and all of them will not fit 
into the TLB.  So, we will generate O(N/l) TLB misses 

                                                 
*  The Pentium III page size is 4 KB = 512 * d, where d is 

our data element size.  The Alpha page size is 8 KB = 
1024 * d. 
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Figure 2:  Basic step (kth loop) in 
Floyd-Warshall algorithm 
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during each kth loop.  Therefore the total number of TLB 
misses will be O(N2/l). 

The first optimization that we examine is a basic tiling 
approach combined with copying (Figure 3).  Tiling is a 
loop transformation that attempts to reduce the working 
set size.  It solves many small problems and combines the 
solutions into the solution for the original problem.  
Copying is used to reduce conflict misses within the tile 
by placing all the elements in contiguous memory 
locations.  Due to data dependencies, the Floyd-Warshall 
algorithm can only be tiled for the i and j loops.  In order 
to find the optimal tile size for each architecture, it is best 
to experiment with various tile sizes (see Section 4).  For 
the sake of analysis, suppose that the tile size is βxβ, 
where β2 < cache size.  Since the dependencies still 
require updating all N2 elements in each kth loop (1 ≤ k ≤ 
N), as in the original case, we will have O(N3) overall 
processor-memory traffic.  However, the tiled 
computation does reduce the working set size.  Where we 
used to have an extra O(N) traffic when the ith row 
conflicted with the kth row, there is now an extra O(β) 
traffic when a row of the tile conflicts with the kth row.  
This reduction in conflict misses can be seen in the level-
1 cache misses from Simplescalar (see Table 1). 

In order to understand the number of TLB misses, 
examine the problem of solving a single tile.  Since the 
elements are laid out row-wise for the matrix, each row is 
on a different page, recall that page size is approximately 
N.  This is true even with copying, since the tile in the 
original matrix must be accessed in order to copy it into 
contiguous locations.  Therefore, this requires β + 1 pages 
to update each tile.  For the baseline, the TLB working set 
is O(1), exactly 2 rows of the matrix.  If the TLB is 
smaller than β + 1, we will have O(β) misses per tile, and 
O(N3/β) total TLB misses.  In fact, this increase in TLB 
misses can be seen in our results from Simplescalar (see 
Table 1).  In our experiments, this optimization gave 
performance improvements ranging from 0% to 40% over 
the baseline. 

 
3.2. Data Layout Optimization of the Floyd-

Warshall Algorithm 
 
The first optimization that we propose is a change in 

data layout.  The theory behind this change in data layout 
is that in order to show spatial locality, and therefore good 
cache performance, the data layout must match the data 
access pattern.  In our tiled optimization, the access is 
naturally tile-by-tile, row-wise through the matrix.  
Within each tile, the data is also accessed row-wise.  In 
order to match this data access pattern, the Block Data 
Layout (BDL) should be used.  The BDL is a two level 
mapping that maps a tile of data, instead of a row, into 
contiguous memory.  These blocks are laid out row-wise 
in the matrix and data is laid out row-wise within the 
block (see Figure 4).  When the block size is equal to the 
tile size in the tiled computation, the data layout will 
exactly match the data access pattern.  Also note that with 
this layout, copying is not necessary, since the elements in 
the tile are already in contiguous memory locations. 

The analysis of this optimization is very similar to that 
of the tiled and copied optimization.  Since the 
dependencies still require updating the entire matrix in 
each kth loop, the total processor-memory traffic will be 
O(N3).  However, the working set is reduced by the tiled 
computation and the level-1 cache misses are reduced as 
shown in Table 2.  This is the same phenomenon that was 
shown in the tiling with copying optimization.  Since each 
tile is in contiguous memory locations and is equal to 
O(1) TLB pages, this only requires O(1) TLB misses for 
each tile of computation.  This gives a total of O(N3/β2) 
TLB misses and a working set of O(1) pages.  Recall that 
in the usual implementation, the working set was a row of 
the adjacency matrix.  This was laid out in contiguous 
memory locations, so the working set of pages is O(1).  In 
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kth row

kth column

copied
(i,j) tile

β

β

 
Figure 3:  Tiling plus copying for 

Floyd-Warshall algorithm 

Data level-1 cache misses 
N Baseline Tiled, ββββ=32 

1024 0.81 0.63 
1536 2.72 2.13 

(billions) 
 

Data TLB misses 
N Baseline Tiled, ββββ=32 

1024 5.29 86.71 
1536 17.76 218.08 

(millions) 

Table 1:  Simplescalar results for tiled and 
copied Floyd-Warshall algorithm.  
Architectural parameters used were from 
Pentium III architecture; see Section 4 for 
specific parameter values. 
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the tiled version, we showed the working set of pages was 
O(β).  This difference can be seen in the Simplescalar 
simulation results for TLB misses (see Table 2).  The 
experimental results for the BDL optimization showed 
performance increases in the range of 5% to 15% on the 
Pentium III and approximately 40% on the Alpha (see 
Section 4) 

 
3.3. The Unidirectional Space Time 

Representation and Cache-Friendly 
Algorithms 

 
In this Section we introduce the Unidirectional Space-

Time Representation (USTR).  We show that this 
representation can be used to generate cache-friendly 
implementations of many algorithms.  In Section 3.3.1 we 
introduce the basic idea of a space-time representation 
and the difference between this representation and the 
iteration space.  In Section 3.3.2 we show how the USTR 
can be used to generate cache-friendly implementations.  
We also show analytical bounds on processor-memory 
traffic and show a technique to find an optimal partition 
size.  Finally, in Section 3.3.3 we show one instance of 
how the USTR can be applied to transitive closure using 
results from Simplescalar to illustrate performance gains.  
Running times for this optimization can be found in 
Section 4.  Throughout this Section we use matrix 
multiply as an example application; however, these 
techniques can be applied to many algorithms.  For the 
sake of clarity we will skip a formal definition of the 
USTR and focus on the key ideas. 

 
3.3.1. Unidirectional Space Time Representation.  Let 
us first explain what we mean by a space-time 
representation.  Similar notions have been used by the 
systolic array designs and VLSI signal processing 
community ([7, 19]).  Consider a problem in which the 
result is an NxN matrix.  We divide the problem in space 
by representing the computation required to calculate each 
result as a computational element (CE) in an NxN array, 

for example, the multiply-add operations required in a 
matrix multiply.  Referring to Figure 6, each circle in the 
space represents the computation required for the (i,j)th 
result.  The notion of time comes from the data flowing 
through this NxN array of CEs.  Referring to Figure 6 
again, the data A would flow row-wise into the array from 
the left and the data B would flow column-wise into the 
array from the top.  As the data flows through the array, 
each element does some simple computation on the data 
inside it and passes on the data.  Once the data has flowed 
completely through the array, the (i,j) result lies in the 
corresponding CE.  The space-time representation is 
much like a systolic array design.  If each CE were 
viewed as a processor, the result would be an NxN 
systolic array [19].  The distinction that we add is the 
notion of unidirectional data flow.  We only allow data to 
flow in the forward direction, either down or to the right.  
This allows us to generate a cache-friendly 
implementation. 

Consider, for example, the simple systolic array 
implementation for multiplying 2, 4x4 matrices (see 
Figure 5).  During t=1, the CE (1,1) receives A11 from the 
left and B11 from the right and computes C11 = A11*B11.  
During times t=2, 3, & 4, the CE will receive A1t and B1t, 
and will compute C11 = A1t*B1t + C11.  In general, CE (i,j) 
will receive data elements Aik and Bkj at time [(i-1) + (j-1) 
+ k] and will compute Cij = Cij + Aik*Bkj.  The 
computation will be complete at time t=12, when element 
(4,4) updates C44=C44 + A44*B44 [19]. 

The key difference between this and the iteration space 
is the idea of scheduling operations in space.  The 
iteration space actually deals only with scheduling 
operations in time, whereas the USTR represents 
operations divided in space as well as time [15].  As we 
will show in the next section, this fact allows us to 
generate implementations that are cache-friendly. 

�������������
�������������
�������������

�������������
�������������
�������������

������������
������������
������������

����������������
����������������
����������������

1 page/block

Blocks laid out 
row-wise.

Elements laid 
out row-wise 
inside blocks.

√N
Data level-1 cache misses 
N Baseline BDL 

1024 0.81 0.58 
1536 2.72 1.95 

(billions) 
 

Data TLB misses 
N Baseline Tiled BDL 

1024 5.29 86.71 5.80 
1536 17.76 218.08 19.20 

(millions) 

Figure 4:  The Block Data Layout Table 2:  Simplescalar results for BDL 
optimization of Floyd-Warshall algorithm.  
Architectural parameters used were from 
Pentium III architecture; see Section 4 for 
specific parameter values. 
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In summary, what we mean by a USTR is an NxN 
array of computational elements (CEs) where each 
element performs O(N) computations.  Thus, when 
implemented on a uniprocessor the algorithm requires 
O(N3) time.  If the CEs are scheduled in a row-wise 
fashion, this would produce the baseline implementation 
cooresponding with a usual 3-level perfectly nested loop. 

 
3.3.2. From the USTR to a Cache-Friendly 
Implementation.  In order to predict cache performance 
when we implement the above representation on a 
uniprocessor, we need to make a few assumptions 
regarding the CEs.  We first assume that a fixed amount 
of computation is done at each CE during each time and 
the amount is relatively small.  For the sake of simplicity, 
we also assume that each CE is performing exactly the 
same computation.  We refer to this as a single operation.  
In the matrix multiply example each element performed 
one multiply and add during each time unit.  Finally, we 
assume that the local memory required within each CE is 
constant, for example each CE in the matrix multiply 

array required local storage for one accumulated value.  
These assumptions are common to most systolic array 
designs.  Note that the cache performance analysis does 
not depend on the type of operations being performed, 
making it applicable to any algorithm expressed in a 
USTR.  All assumptions regarding cache size and 
problem size from Section 3.1 still hold.  Recall that data 
flow has been limited to the forward direction, i.e. either 
down or to the right.  Again, for the sake of clarity we will 
skip formal proofs and focus on the key ideas. 

Examining a single CE, note that the computation 
required is N operations.  In the matrix multiply example, 
each CE required four operations to compute the final 
result.  Each operation requires 2 new data elements as 
well as any locally stored values.  This will subsequently 
result in 2*N processor-memory traffic on a traditional 
architecture.  In a usual implementation, each CE could be 
executed in a row-wise fashion.  For the matrix multiply 
USTR, this corresponds to the usual 3-level nested loop 
code (without tiling).  Based on the above calculation, this 
would result in Θ(N3) processor-memory traffic. 

Now let us define a tiled order of computations as 
follows.  First tile the array of CEs into tiles of size βxβ 
(see Figure 6).  Within each tile, operate on CEs in a row-
wise fashion.  Within each CE, process β elements of the 
row and column that will pass through it before moving 
on to the next CE.  We define a pass through a tile as 
executing each CE for β elements.  Repeatedly pass 
through each CE in the tile until all input data has been 
processed.  Returning to the matrix multiply example, this 
implementation would match with a 6-level nested loop 
implementation of matrix multiply. 

Another method of tiling would be to first tile the array 
of CEs into tiles of size βxβ.  Within each tile, instead of 
processing β elements at each CE at a time, process the 
entire array for t=1, then process it for t=2, and so for t≤β.  
This then would be defined as a single pass through the 
tile. 

Between each CE and between tiles we place a First-
In-First-Out (FIFO) buffer.  When the adjacent CE or tile 
begins, it receives data from this buffer in the same 
manner as if all CEs were processing data simultaneously. 

As we saw in Section 3.2, it is also beneficial to match 
our data layout to the data access pattern.  Recall that we 
demonstrated large improvements in TLB misses when 
we used the BDL on a tiled access pattern compared with 
a row-wise data layout for the same access pattern.  Since 
the access to the input data in the USTR is also in a tiled 
fashion, it is beneficial to again use the BDL to minimize 
TLB misses.  Throughout this section we assume a BDL 
when implementing the USTR to eliminate self 
interference misses and minimize cross interference 
misses between blocks of data. 

When the computation is tiled as shown earlier in 
Figure 6, we can take advantage of data locality and 
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…
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Figure 5:  USTR for 4x4 matrix multiply 

A ⊗ B for N x N matrices

B11

B12 B1N

A11
A12

A1N

= computation for result (i,j)

β

β

…

…

…

…
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j

Figure 6:  Unidirectional Space 
Time Representation. 

Note:  ⊗⊗⊗⊗ refers to a generic 
matrix operation. 
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reduce the processor-memory traffic.  Examining the first 
pass through a tile of the array of CEs, each CE performs 
β operations, requiring the first β data elements of one 
row and one column of the input as well as its locally 
stored value.  Note that the CE directly below it requires 
exactly the same column elements and β data elements 
from the next row.  When this is extended to the entire 
tile, it requires 2*β 2 data elements of the input, β 2 locally 
stored values, and performs β 3 operations.  In order to 
complete each tile, it must be passed through N/β times.  
This requires 2*(N/β)*β 2 data elements of the input, β 2 
locally stored values, and performs (N/β)*β 3 total 
operations.  From this discussion we have the following 
theorem. 

Theorem 1:  Given an USTR of an algorithm, 
we can reduce the amount of processor-memory 
traffic by a factor of β, where cache size is O(β2), 
compared with a baseline implementation. 

Proof sketch: Each pass through a tile requires 2*β 2 
elements of the input and β 2 locally stored elements and 
performs β 3 operations.  If we choose β 2 to be O(C) 
where C is the cache size, all locally stored values will 
reside in the cache.  Also, the current 2*β 2 tiles of the 
input will remain in the cache for the duration of the pass.  
Each pass through a tile then results in 2*β 2 processor-
memory traffic.  There is a total of (N/β)x(N/β) tiles.  
Each tile requires N/β passes.  The total number of 
operations is given by: 

33*** NNNN =
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βββ

 

The total amount of processor-memory traffic is given by: 
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Therefore the processor-memory traffic is reduced by a 
factor of β. 

In order to implement the USTR we must also consider 
the schedule for computing each tile.  Recall from Figure 
6 that in the USTR all data flow is in the forward 
direction.  Therefore, in order to satisfy these data 
dependencies, a valid schedule will have the following 
characteristic: 

• When computing tile (i,j), all tiles (k,l), where {k ≤ i 
and l < j} or {k < i and l ≤ j}, must have already been 
computed; where the tile (1,1) is the upper left most 
tile. 

For example, a row-wise schedule of tiles would satisfy 
this requirement.  One could also use a more complex 
schedule such as a wavefront.  

When faced with a multi-level memory hierarchy, one 
could consider a multi-level tiling method for both the 
schedule and the data layout in the USTR.  Consider a 

multi-level tiling method such as the method shown in 
Figure 7.  In this method β would be chosen to minimize 
the traffic between level-1 and level-2 cache.  This is 
exactly what we have shown thus far in our discussion.  
The traffic between the level-2 cache and the next level of 
the memory hierarchy would then be minimized by 
choosing β’ such that β’ 2 is equal to the size of the level-2 
cache.  We could use a simple row-wise layout of tiles 
within this larger β’xβ’ tile.  This could be repeated until 
we reach a level that is larger than our problem size.  
Using this multi-level tiling method, we can gain an 
improvement of ic  in traffic at each level of the 
memory hierarchy, where ci is the size of the memory at 
the corresponding level of the memory hierarchy.   In this 
case the schedule of βxβ tiles and β’x β’ tiles becomes 
important.  In order to take advantage of the most data 
reuse possible the schedule of operations must match the 
data layout while still satisfying the unidirectional data 
flow properties of the USTR. 

One of the key factors in Theorem 1 holding is that β 2 
is chosen to be on the order of cache size.  The simplest 
and possibly the most accurate method of choosing β is to 
experiment with various tile sizes.  This is the method that 
the Automatically Tuned Linear Algebra Subroutines 
(ATLAS) project employs [21].  However, it is beneficial 
to find an estimate of the optimal tile size.  The following 
is a method to generate approximate bounds on the 
optimal tile size. 

Note that the working set is composed of 3 βxβ tiles of 
data.  We can classify cache misses into three categories; 
compulsory misses, conflict misses, and capacity misses.  
Compulsory misses, by definition, cannot be avoided.  
Here we provide a heuristic for choosing a tile size, such 
that conflict and capacity misses are minimized. 

• Use the 2:1 rule of thumb from [14] (see below) to 
adjust the cache size to that of an equivalent 4-way 
set associative cache.  This minimizes conflict 
misses since our working set consists of 3 
contiguous tiles of data.  Self interference misses 

������������
������������
������������

β

…
…

β’

…

…

 
Figure 7:  Multi-level tiling for USTR 

schedule and/or layout. 
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are eliminated by the data being in contiguous 
locations and cross interference misses are 
eliminated by the associativity. 

• Choose β by Equation 1, where d is the size of one 
element and C is the adjusted cache size.  This 
minimizes capacity misses. 

 Cd =**3 2β  
The 2:1 rule of thumb states that a direct mapped cache 

of size C has approximately the same miss ratio as a 2-
way set associative cache of size C/2.  Based on the 
results published in [14] this rule of thumb holds loosely 
for any k and 2*k way set associative caches.  For 
example, if the cache is a 2-way set associative cache of 
size C, the equation to solve would be 3*β2*d = C/2.  
Also note that this does not calculate an exact value for 
the optimal β, it simply finds a loose bound on the desired 
search space. 

It is also important to note that the search space must 
take into account each level of cache as well as the size of 
the TLB.  Given these various solutions for β the best tile 
size can be found experimentally.  In order to validate this 
method, calculate the best tile size for the Pentium III 
machine based on the level-2 cache.  The level-2 cache is 
a 256 KB, 8-way set associative cache.  Use the 2:1 rule 
of thumb and base the calculations on a 512 KB, 4-way 
set associative cache.  The element size d is 8 bytes.  
Solving Equation 1 gives β = 147.8.  Experimentally, the 
best tile size for the USTR optimization of transitive 
closure on our Pentium III was found to be β = 140. 

 
3.3.3. A Cache-Friendly Algorithm for Transitive 
Closure.  As we stated in Section 3.4.1, the USTR is 
similar to notations used in the systolic array and VLSI 
signal processing communities.  A standard systolic array 
implementation of the Floyd-Warshall algorithm is as 
follows [19]. 

• Given a graph with N vertices in the adjacency 
matrix representation, feed the matrix A into an 
NxN systolic array of processing elements (PEs) 
both row-wise from the top and column-wise from 
the left as shown in Figure 8. 

• At each PE (i,j), update the local variable C(i,j) by 
the following formula: 

),min( ),(),(),(),( jkkijiji AACC +=  
Where A(i,k) is the value received from the top and 
A(k,j) is the value received from the left. 

• If i=k, pass the value C(i,j) down, otherwise pass 
A(k,j) down.  If j=k, pass the value C(i,j) to the right, 
otherwise pass A(i,k) to the right. 

• Finally, when data elements reach the edge of the 
matrix, a loop around connection should be made 
such that A(i,N) passes data to A(i,1) and A(N,j) passes 
data to A(1,j) (see Figure 8). 

Lemma 1 [19]: The above computation results 
in the transitive closure of the input once all 
input data elements have been passed through the 
entire array exactly 3 times. 

Without a transformation, this implementation does not 
fit in the USTR due to the loop around connections.  
Recall that in order to fit in our USTR, all data must flow 
in the forward direction, namely either down or to the 
right (see Section 3.4.1).  However, based on the above 
Lemma 1 we can expand the original representation in the 
following manner. 

Copy the entire array twice so that we have three NxN 
arrays of PEs.  Make a connection from the end of the ith 
row in one array to the beginning of the ith row in the next 
and from the end of the jth column in one array to the 
beginning of the jth column in the next as shown in Figure 
9.  These connections replace the loop around connections 
in the original systolic array implementation (see Figures 
8 & 9). 

This new representation qualifies as unidirectional and 
therefore is an USTR of the Floyd-Warshall algorithm.  

…

A11
A12

A1N

A11
A21

A1N

A21

A12

…

…

…

Figure 8:  Systolic Array 
implementation of Floyd-
Warshall algorithm 

Figure 9:  Unidirectional Space 
Time Representation of 
Systolic Array algorithm 
for transitive closure. 

1 

2 
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Note that each PE in the systolic array implementation 
becomes a Computational Element (CE) in our USTR.  
Also note, that although the representation visually 
requires 3*N2 space, no additional memory is required 
compared with the baseline implementation.  Based on the 
results in Section 3.3.2 we can execute each CE on a 
uniprocessor architecture.  We can also tile the 
computation in the manner shown in Section 3.4.2 and 
based on Theorem 1 we have: 

Theorem 2:  The Floyd Warshall algorithm can 
be implemented on a uniprocessor such that the 
processor-memory traffic is reduced by a factor 
of β, where cache size is on the order of β2 
compared with the baseline implementation. 

The maximum reduction factor in processor-memory 
traffic to perform ordinary matrix multiplication given a 
limited internal memory is O( M ) where M is the size of 
the internal memory [10].  Using the structure of the 
Floyd-Warshall dependency graph, it can be shown: 

Theorem 3:  Our USTR implementation of the 
Floyd-Warshall algorithm is (asymptotically) 
optimal with respect to processor memory traffic. 

To illustrate this reduction in processor-memory traffic 
we show results from Simplescalar experiments for the 
number of cache misses (see Table 3).  Even though this 
algorithm performs a total of 3*N3 operations, 
Simplescalar results show a 30x improvement in level-2 
cache misses.  Note that it was found experimentally that 
the best tile size for the USTR algorithm on the Pentium 
III architecture essentially ignores the level-1 cache and 
focuses on the level-2 cache misses.  This is due to the 
level-2 cache being on-chip, and therefore the miss 
penalty for a level-2 miss is much higher than a level-1 
miss.  For more information regarding experimental 
results see Section 4. 

 
3.4. Summary 

 
In summary, we show 

Table 4 comparing the 
optimizations we have 
discussed in Section 3 for 
computation complexity, 
processor-memory traffic, 
and Simplescalar results.  
Cache size is less than N2.  
Experimental results are 
shown in Section 4. 

 
4. Experimental 

Results 

 
For our experiments we used two 933 MHz Pentium 

III machines.  These have separate instruction and data 
level-1 caches, each 16 Kilobytes (KB), 4-way set 
associative with 32 Byte (B) lines.  The processors have a 
unified on-chip level-2 cache, which is 256 KB, 8-way set 
associative with 32 B lines.  The TLB is split for data and 
instructions.  The instruction TLB has 32 entries and is 4-
way set associative with LRU replacement.  The data 
TLB has 64 entries and is 4-way set associative with LRU 
replacement.  The page size for both TLBs is 4 KB.  The 
operating system was Windows 2000 professional (used 
MSVC++ compiler, version 6.0) on one and Mandrake 
Linux on the other (used gcc compiler, version 2.95.2). 

Data level-1 cache misses 
N Baseline USTR 

1024 0.81 8.16 
1536 2.72 2.76 

(billions) 
 

Data level-2 cache misses 
N Baseline USTR 

1024 538 18 
1536 1,814 57 

(millions) 
 

Data TLB misses 
N Baseline USTR 

1024 5.29 4.08 
1536 17.76 15.61 

(millions) 

Table 3:  Example Simplescalar results for 
USTR Floyd-Warshall algorithm, ββββ = 140. 
Architectural parameters used were 
from Pentium III architecture; see 
Section 4 for specific parameter values. 

Summary of analytical and simulation results 
 Baseline Tiled BDL USTR 

Computational 
complexity 

N3 N3 N3 N3 

Processor-memory 
traffic 

N3 N3 N3 N3/β 

Data Level-1 cache 
misses 

2.72 2.13 1.95 2.76 

Data Level-2 cache 
misses 

1.81 1.85 1.84 0.057 

Data TLB misses 0.018 0.218 0.019 0.016 
(billions) 

Table 4:  Summary of results from Section 3.  Architectural parameters used 
were from Pentium III architecture; see Section 4 for specific 
parameter values. 
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We also used a 500 MHz Alpha machine for our 
experiments.  This machine has split data and instruction 
level-1 caches each 64 KB, 2-way set associative with 64 
B lines.  The level-2 cache is a unified off-chip cache of 
size 4 Megabytes (MB), direct mapped with 64 B lines.  
Along with these, the Alpha also has an 8-element fully 
associative victim data buffer used for both instructions 
and data.  The TLB on the Alpha has 128 entries and is 
fully associative.  The page size is 8 KB.  The operating 
system is Linux and we used the gcc compiler (version 
2.91.66). 

Finally, we used a 300 MHz MIPS R12000.  This was 
part of a 64 processor SMP Origin 2000, although our 
implementations ran only on one processor.  This 
processor also has split instruction and data level-1 cache; 
each 32 KB, 2-way set associative, with 32 B lines.  The 
level-2 cache is a unified 8 MB cache, direct mapped, 
with 64 B lines.  The TLB has 64 entries, is fully 
associative, with a page size of 4 KB.  The operating 
system was IRIX64 version 6.5 and we used the gcc 
compiler (version 2.8.1). 

The simulator that we used was from the Simplescalar 
Architectural Research Toolkit, version 2.0 [3].  The 
Simplescalar architecture is derived from the MIPS-IV 
ISA.  The tool we used was sim-cache, which simulates 
the cache performance of a given executable.  Parameters 
that are customizable include level-1 and level-2 
instruction and data cache parameters as well as 
instruction and data TLB parameters.  Parameters for 
these include the number of sets, block size, associativity, 
and replacement policy. 

Figures 10-13 show the actual running times of the 4 
implementations on the 4 different machines; compiler-
optimized, tiled and copied, block data layout (BDL), and 
the USTR optimization. 

On both Pentium III’s, we show small improvements 
in the tiled optimization and the BDL, while the USTR 
implementation gave better than 2x improvement over the 
compiler optimized implementation (see Figures 10&11).  
This is quite consistent with the simulation results 
presented in earlier sections (see Table 4).  The number of 
cache misses for the tiled and copied and the BDL 
optimization were both within 30% of the baseline for 
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Figure 10:  Execution times for 
implementations on Pentium III 
running Windows 2000. 

Figure 11:  Execution times for 
implementations on Pentium III 
running Linux. 
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Figure 12:  Execution times for 
implementations on Alpha running 
Linux. 
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Figure 13:  Execution times for 
implementations on MIPS R12000 
running IRIX64. 
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level-1 and within 2% for level-2.  The BDL had the best 
level-1 cache performance and this shows up as the best 
execution time in all but one specific case (N=1536 on 
the Pentium III running Windows).  One difference to 
note is the difference in execution time for the baseline, 
relative to the tiled and copied and the BDL, on the two 
machines.  This difference is probably due to the different 
compilers being used and the level of optimization done 
by those compilers.  The USTR optimization’s 
improvement matches very nicely with the 97% decrease 
in level-2 cache misses.  Recall that the memory 
hierarchy on the Pentium III behaves more like a two 
level memory hierarchy due to the level-2 cache being on-
chip.  This performance led us to use a block size that 
essentially ignored the level-1 cache.  In fact our level-1 
cache misses increased slightly from the baseline.  This 
drastic decrease in level-2 cache misses as well as a slight 
decrease in TLB misses gave us an overall 2x 
improvement in performance. 

The Alpha machine showed significantly different 
results.  The tiled optimization and the BDL optimization 
showed much larger performance improvements, while 
the USTR implementation showed similar improvements 
as what we saw on the Pentium III’s, approximately 2x 
improvement.  One reason for this may be that the Alpha 
has an off-chip level-2 cache and a victim cache.  This 
would show very different miss penalties, than we saw on 
the Pentium III.  In order to take full advantage of the two 
levels of cache on the Alpha a two level tiling of the 
USTR should be employed (see Section 3.3.2, Figure 7).  
At the time of this writing we have not performed these 
experiments. 

The MIPS R12000 showed surprisingly poor 
performance for the baseline or compiler optimized code.  
This led to almost a 2x improvement for the tiled and 
copied optimization.  The BDL optimization showed 
approximately 15% improvement over the tiled and 
copied optimization.  The USTR optimization showed a 
3x improvement over the baseline and almost a 2x 
improvement over the tiled and copied optimization.  
Apart from the poor performance of the baseline, these 
results match roughly with the results from our other 
architectures. 

For each of the tiled optimizations (tiled and copied, 
BDL, and USTR) we used experimentation to find an 
optimal tile size for each machine.  These results are 
shown in Figure 14 and Table 5.  For the USTR 
optimization, we expanded our search space based on the 
results from our block size selection heuristic (see Section 
3.4.2, equation 1).  We experimented with block sizes in 
the range of 30 to 180 (see Figure 14).  The best block 
sizes for each machine and optimization are given in 
Table 5. 

 
5. Conclusions and Future Work 

 
We examined a number of different optimizations for 

the Floyd-Warshall algorithm.  We noted that this 
algorithm poses very different challenges from those seen 
in dense linear algebra problems.  In order to address 
these challenges in a unique fashion, we proposed the 
Unidirectional Space Time Representation (USTR).  We 
showed analytically that this representation could be used 
to generate cache-friendly optimizations for a large class 
of algorithms and we demonstrated the improvements in 
cache performance for Transitive Closure using the 
Simplescalar simulator.  Using this representation, we 
showed up to a 2x improvement in the performance of the 
Floyd-Warshall algorithm on 3 different architectures. 

Using the USTR representation it is also possible to 
generate cache-friendly implementations of both the 
Algebraic Path Problem and LU-Decomposition without 
pivoting.  The Algebraic Path Problem is essentially a 
generalization of the Floyd-Warshall algorithm, so our 
USTR implementation can be generalized in the same 
fashion.  For LU-Decomposition without pivoting the data 
dependencies exist only in the forward direction and this 
therefore fits nicely in a USTR. 

The deep memory hierarchy of modern uniprocessors 
poses new challenges and new opportunities for cache-
friendly optimization.  Future work on the USTR will 
address these new opportunities by developing multi-level 

Optimal Tile Sizes 
 P III, 

W2K 
PIII, 

Linux 
Alpha MIPS 

Tiled and 
Copied 

36 32 42 42 

BDL 38 40 40 40 
USTR 140 140 70 70 
USTR 
Range 

(26,148) (26,148) (36,209) (26,295) 

Table 5:  Optimal tile sizes for tiled 
algorithms for each machine and 
range given by tile size heuristic 

250

270

290

310

330

350

0 100 200
Tile Size (N=2048)

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Figure 14:  USTR Optimization, 
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tiled data layouts and schedules that can be tuned to the 
multiple levels of cache memory. 

This work is part of the Algorithms for Data IntensiVe 
Applications on Intelligent and Smart MemORies 
(ADVISOR) Project at USC [1].  In this project we focus 
on developing algorithmic design techniques for mapping 
applications to architectures.  Through this we understand 
and create a framework for application developers to 
exploit features of advanced architectures to achieve high 
performance. 
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Abstract

Recently, several experimental studies have been conducted
on block data layout as a data transformation technique
used in conjunction with tiling to improve cache perfor-
mance. In this paper, we provide a theoretical analysis for
the TLB and cache performance of block data layout. For
standard matrix access patterns, we derive an asymptotic
lower bound on the number of TLB misses for any data lay-
out and show that block data layout achieves this bound.
We show that block data layout improves TLB misses by a
factor of �����	� compared with conventional data layouts,
where � is the block size of block data layout. This reduc-
tion contributes to the improvement in memory hierarchy
performance. Using our TLB and cache analysis, we also
discuss the impact of block size on the overall memory hi-
erarchy performance. These results are validated through
simulations and experiments on state-of-the-art platforms.

1. Introduction

The increasing gap between memory latency and proces-
sor speed is a critical bottleneck in achieving high perfor-
mance. The gap is typically bridged through a multi-level
memory hierarchy that can hide memory latency. The per-
formance of this memory hierarchy system is severely im-
pacted by the locality of data references. To improve mem-
ory hierarchy performance, compiler optimization tech-
niques (e.g. loop permutation, fusion, and tiling) [13, 14,
21] have received considerable attention, which improve
the locality of the data reference. These techniques, called
control transformations, change the loop iteration order,
thereby changing the data access pattern [4, 8, 19, 25]. Most


Supported by the DARPA Data Intensive Systems Program under con-

tract F33615-99-1-1483 monitored by Wright Patterson Air force Base, in
part by NSF CCR-9900613, and in part by an equipment grant from Intel
Corporation.

previous optimizations concentrate on single-level cache [8,
11, 15, 19, 23]. Multi-level caches in memory hierarchy
were considered by a few researchers [20, 25]. However,
most of these approaches target mainly the cache perfor-
mance, paying less attention to the Translation Look-aside
Buffer (TLB) performance. As the problem sizes become
larger, the overall performance can drastically degrade be-
cause of TLB thrashing [22]. Hence, both TLB and cache
must be considered in optimizing application performance.
In [12], cache and TLB performance were considered in
concert. In this analysis, TLB and cache were assumed to
be fully-set associative. However, cache is direct mapped or
small set-associative in most of state-of-the-art platforms.

Some recent work [11, 17, 18, 23] proposed data trans-
formations that change the data layout in memory to match
the data access pattern. It was proposed in [10] that both data
and loop transformation can be applied to loop nests for op-
timizing cache locality. In [5, 6], a matrix is partitioned into
small blocks of data. Data elements within one block are
mapped onto contiguous memory. These blocks were laid
out in memory by different space-filling curves. These data
layouts have shown performance improvement over canon-
ical row or column major layouts. Block data layout is one
such layout where blocks are arranged in row-major order.
ATLAS [2, 24] uses block data layout with tiling to exploit
temporal and spatial locality. The combination of block data
layout and tiling has shown high performance on various
platforms. However, these results were confirmed through
experiments; we are not aware of any formal analysis that
addresses TLB performance..

In this paper, we study the impact of block data layout � ,
with and without tiling, on the performance of both TLB
and caches. First, we analyze the intrinsic TLB performance
of block data layout. The TLB and cache performance for
block data layout with tiling are analyzed. The block data
�
To avoid confusion, in this paper, ‘block’ is used in the context of a

data transformation technique, e.g. block data layout. ‘tiling’ is used to
represent a control transform technique.
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layout with tiling shows better TLB performance compared
with other state-of-the-art techniques like copying [11, 23]
and padding [15, 19]. Simulations and experiments are con-
ducted to verify this analysis.

Similar to the importance of tile size selection for tiling,
appropriate block size selection for block data layout is crit-
ical to achieve high performance. In ATLAS, the selec-
tion of the optimal block size is done empirically at compile
time by running several experiments with different block
sizes [24]. The selection criteria does not have any support-
ing formal analysis. In [5, 6], it is observed that the block
size should not be too small nor too large. However, no an-
alytical bounds for block size were presented. In this pa-
per, we propose an analytical bound for optimal block size
in block data layout, on the basis of our TLB and cache anal-
ysis.

The contributions of this paper are as follows:

� We present a lower bound analysis for TLB perfor-
mance. Further, we show that block data layout in-
trinsically has better TLB performance than canonical
layouts (Section 2). Compared with row major layout,
the number of TLB misses for block data layout is im-
proved by ��� � ��� � where

���
is the page size.

� We analyze the TLB and cache performance of tiling
with block data (Section 3.1 and 3.2). In tiled matrix
multiplication, block data layout improves the number
of TLB misses by a factor of � , where � is the block
size.

� On the basis of our cache and TLB analysis, we propose
a block size selection algorithm that provides a tight an-
alytical bound for block size (Section 3.3). The best
block sizes found by ATLAS fall in the range given by
our algorithm.

� We validate our analysis through simulations and ex-
periments on real platforms using matrix multiply, LU
decomposition and Cholesky factorization (Section 4).

The rest of this paper is organized as follows. Section 2
describes block data layout and gives analysis of its TLB
performance. Section 3 discusses the TLB and cache per-
formance when tiling and block data layout are used in con-
cert. A block size selection algorithm is described based on
this analysis. Section 4 shows simulation based as well as
experimental results. Concluding remarks are presented in
Section 5.

2. Block Data Layout and TLB Performance

In Section 2, we analyze the TLB performance of block
data layout. We show that block data layout has better intrin-
sic TLB performance than conventional data layouts. With-
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(b) Block data layout

Figure 1. Various data layouts: block size ����� for
(b)

out loss of generality, the canonical layout is assumed to be
row major.

The following notations are used in this paper.
�	�

de-
notes virtual page size. 
��� � denotes the TLB entry capacity.
In general, 
��� ��� ��� . Block size is ��� � , where it is as-
sumed ������� ��� . Cache is assumed to be direct-mapped.

���� is the size of the � ��� level cache. Its line size is denoted as� ��� . We assume that TLB is fully set-associative and Least-
Recently-Used(LRU) replacement policy is used.

2.1. Block Data Layout

To support multi-dimensional array representations in
current programming languages, the default data layout
is row-major or column-major, denoted as canonical lay-
outs [7]. Both row-major and column-major layouts have
similar drawbacks. For example, consider a large matrix
stored in row-major layout. Due to large stride, column ac-
cesses can cause cache conflicts. Further, if every row in a
matrix is larger than the size of a page, column accesses can
cause TLB trashing, resulting in drastic performance degra-
dation. In block data layout, a large matrix is partitioned into
sub-matrices. Each sub-matrix is a � � � matrix and all el-
ements in the sub-matrix are mapped onto contiguous mem-
ory locations. The blocks are arranged in row-major order.
Figure 1 shows block data layout with block size ���!� .
2.2. TLB Performance of Block Data Layout

In this subsection, we present a lower bound on the TLB
misses for any data layout. We discuss the intrinsic TLB per-
formance of block data layout. We present an analysis on
the TLB performance of block data layout and show that its
performance is improved when compared with conventional
layouts. Throughout this paper, we consider an "#�$" array.
Also it is assumed that " is large enough that "&% �'��(

��� � .
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2.2.1 A Lower Bound on TLB Misses

In general, most matrix operations consist of row and col-
umn accesses, or permutations of row and column accesses,
which are called generic access pattern � in this paper. In
this section, we consider an access pattern where an array
is accessed first along all rows and then along all columns.
The lower bound analysis of TLB misses incurred in access-
ing the data array along all the rows and then all the columns
is as follows.

Theorem 2.1 For accessing an array along all the rows
and then along all the columns, the asymptotic � minimum
number of TLB misses is given by � ���� ��� .
Proof: Consider an arbitrary mapping of array elements to
pages. Let �
	���� �� at least one element of row � is in page
����� Similarly, let ��	������� at least one element of column �
is in page ����� Let ��	��� �
	� and ��	��� ��	� . Note that ��	 ���	�% ��� � Using the mathematical identity that the arithmetic
mean is greater than or equal to the geometric mean ( ��	
���	�% � � ��	�� ��	�% � � ��� ), we have:

! �" �#
	%$ �

�&��	
�'��	 �$% � " ����)( ��� �
Let * � ( +�, ) denote the number of pages where elements in
row � (column � ) are scattered. The number of TLB misses
in accessing all rows consecutively and then all columns
consecutively is given by -/.$�1020�%�3 ��1$ � �&* ��4 ����
��� � � �5�3 �,6$ � �&+�,74 ����
��� � � ��� ����
��� � � is the number of page en-
tries required for accessing row � (column � ) that are already
present in the TLB. Page � is accessed ��	 times by row ac-

cesses, thus, 3 ��1$ � * � �83
! �" �	%$ � ��	 . Similarly, 3 �,6$ � +�, �

3
! �" �	%$ � ��	 . Therefore, the total number of TLB misses is

given by

-�.$�1020�%
! �" �#
	%$ �

�&��	�����	 ��4 � ":9 ����
��� � �$%#� � " �� ��� 4 � ":9 ����
��� � ���
(1)

As the problem size ( " ) increases, the number of pages ac-
cessed along a row (column) becomes larger than the size of
TLB ( 
��� � ). Thus the number of TLB entries that are reused
is reduced between two consecutive row (column) accesses.
Therefore the asymptotic minimum number of TLB misses
is given by � ���� ��� . ;
<

In the rest of this paper, we refer to the access pattern of all rows and
all columns as generic access pattern=

This asymptotic [9] bound holds true when > is large. Also, the impact
of ?�@BA C becomes negligible when > is large and hence does not appear in
the bound.

We obtained a lower bound on TLB misses for any lay-
out when data are accessed along all rows and then along all
columns. This lower bound of TLB misses also holds when
data is accessed along an arbitrary permutation of all rows
and columns.

Corollary 2.1 For accessing an array along an arbitrary
permutation of row and column accesses, the asymptotic
minimum number of TLB misses is given by � ���� ��� .

2.2.2 TLB Performance

In this section, we consider the same access pattern as dis-
cussed in Section 2.2.1. Consider a given " � " array stored
in a canonical layout. During the first pass (row accesses),
the memory pages are accessed consecutively. Therefore,
TLB misses caused by row accesses is equal to

������ . Dur-
ing the second pass (column accesses), elements along the
column are assigned to " different pages. Hence, a column
access causes " TLB misses, since " ( 
��� � . All " col-
umn accesses result in " � TLB misses. The total number of
TLB misses caused by all row accesses and all column ac-
cesses is thus

������ ��" � . Therefore, in canonical layout, TLB
misses drastically increase due to column accesses.

Compared with canonical layout, block data layout has
better TLB performance. The following theorem shows that
block data layout minimizes the number of TLB misses.

Theorem 2.2 For accessing an array along all the rows
and then along all the columns, block data layout with block
size
� ��� � � ��� minimizes the number of TLB misses.

Detailed proof for this theorem can be found in [16]. In gen-
eral, the number of TLB misses for a �!� � block data layout
is � � �D � � �D . It is reduced by a factor of E ����F �2G D��� E 	 F �2G ( H

D	 F � )
when compared with canonical layout. When � � � ���
( ����I ), this number approaches the lower bound shown in
Theorem 2.1.

This theorem holds true even when data in block data lay-
out is accessed along an arbitrary permutation of all rows
and columns.

Corollary 2.2 For accessing an array along an arbitrary
permutation of rows and columns, block data layout with
block size

� ��� � � ��� minimizes the number of TLB misses.

Even though block data layout has better TLB perfor-
mance compared with canonical layouts for generic access
patterns, it alone does not reduce cache misses. The data ac-
cess pattern of tiling matches well with block data layout. In
the following section, we discuss the performance improve-
ment of TLB and caches when block data layout is used in
conjunction with tiling.
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for kk=0 to N by B
    for jj=0 to N by B
        for i=0 to N
            for k=kk to min(kk+B-1,N)
                r = X(i,k)
                for j=jj to min(jj+B-1,N)
                    Z(i,j) += r*Y(k,j)

(a) 5-loop tiled matrix multiplication

for jj=0 to N by B
    for kk=0 to N by B
        for ii=0 to N by B
            for i=ii to min(ii+B-1,N)
                for k=kk to min(kk+B-1,N)
                    r = X(i,k)
                    for j=jj to min(jj+B-1,N)
                        Z(i,j) += r*Y(k,j)

(b) 6-loop tiled matrix multiplication

Figure 2. Tiled matrix multiplication

3. Performance Analysis of Block Data Layout
with Tiling

Tiling is a well-known optimization technique that im-
proves cache performance. Tiling transforms the loop nest
so that temporal locality can be better exploited for a given
cache size. Consider an " � " matrix multiplication rep-
resented as �#����� . For large problems, its performance
can suffer from severe cache and TLB thrashing. To reduce
cache and TLB misses, tiling transforms the matrix multipli-
cation to a 5-loop nest tiled matrix multiplication (TMM) as
shown in Figure 2(a). To efficiently utilize block data lay-
out, we consider a 6-loop TMM as shown in Figure 2(b).

3.1. TLB Performance

In this section, we show the TLB performance improve-
ment of block data layout with tiling. To illustrate the effect
of block data layout on tiling, we consider a generic access
pattern abstracted from tiled matrix operations. The access
pattern is shown in Figure 3, where the whole matrix is ac-
cessed first along the rows then along the columns, in a tiled
pattern. The tile size is equal to � .

With canonical layout, TLB misses will not occur when
accessing consecutive tiles in the same row, if ��� 
 �� � .
Hence, the tiled accesses along the rows generate

� ���� TLB
misses. However, tiled accesses along columns cause con-
siderable TLB misses. � page table entries are necessary
for accessing each tile. For all tiled column accesses, the to-
tal number of TLB misses is - ������ � � � D � � D � � �D �
It is reduced by a factor of � compared with the number of
TLB misses for all column accesses without tiling (see Sec-
tion 2.2).

B

B

(a) Tiled row access

B

B

(b) Tiled column access

Figure 3. Tiled accesses

vP

vPB 7.12  

vP3.0

=

(a) over 2 pages

vP
vP3.0

vPB 7.12  =

(b) over 3 pages

Figure 4. Blocks extending over page boundaries

The total number of TLB misses are further reduced
when block data layout is used in concert with tiling 	 . This
is formally stated in Theorem 3.1. To analyze TLB misses
for tiled accesses using block data layout, we need to know
the number of pages that a block of data is mapped onto.
This is stated in Lemma 3.1.

Lemma 3.1 Consider an array stored in block data layout
with block size � � � , where � � � � ��� . The average num-
ber of pages that one block of data is mapped onto is ���'I .
Proof: For block size � � � , assume that �!��
 �� , where

 is a non-negative integer and ��������I . An illustrative
example of a block extending over page boundaries is shown
in Figure 4. The probability that a block extends over 
 �I contiguous pages is I)4�� . The probability that a block
extends over 
 � � contiguous pages is � . Therefore, the
average number of pages per block in block data layout is
given by: �2I�4�� ��� ��
 ��I ����� � ��
 � � � � ��� I�� ;
Theorem 3.1 Assume that an " �!" array is stored using
block data layout. For tiled access along the rows and then
the columns, the total number of TLB misses is ����� �	 � ������ .

Proof: Blocks in block data layout are arranged in row-
major order. So, a page overlaps between two consecutive
blocks that are in the same row. The page is continuously ac-
cessed. The number of TLB misses caused by all tiled row
accesses is thus

� ���� , which is the minimum number of TLB
misses. However, no page overlaps between two consecu-
tive blocks in the same column. Therefore, each block along
�

Throughout this paper, the block size of block data layout is assumed
to be the same as the tile size so that the tiled access pattern matches the
block data layout.
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the same column goes through ��� ��I � different pages ac-
cording to Lemma 3.1. The number of TLB misses caused
by all tiled column accesses is thus - ���� � ���)��I ��� � D �� D � ��� ��I � � �	 ��� � Therefore, the total TLB misses caused

by all row and all column accesses is -�.$�1020 � ���
� �	 � ������ �;
For tiled access, the number of TLB misses using canonical
layout is

������ � ���D , where � � � � ��� . Using Theorem 3.1,
compared with canonical layout, block data layout reduces

the number of TLB misses by
� 	 ���2F � 	
� 	 F � � D F � 	� 	 F � .

A similar analytical result can be derived for real appli-
cations. Consider the 5-loop TMM with canonical layout in
Figure 2 (a). Array � is accessed in a tiled row pattern. On
the other hand, arrays � and � are accessed in a tiled col-
umn pattern. A tile of each array is used in the inner loops
����� ��� � � . The number of TLB misses for each array is equal
to the average number of pages per tile, multiplied by the
number of tiles accessed in the outer loops ��� ��� �6� � . The av-
erage number of pages per tile is � � D ���� . Therefore, the to-
tal number of TLB misses is given by: � " � � �D � � �D ��� �5�
" � � �D � ���� � .

Consider the 6-loop TMM on block data layout as shown
in Figure 2 (b). A � � � tile of each array is accessed in
the inner loops ����� ��� � � with block layout. The number of
TLB misses for each array is equal to the average number of
pages per block multiplied by the number of blocks accessed
in the outer loops ������� � ��� �6� � . According to Lemma 3.1, the
average number of pages per block is

D ���� � I ���&� � I � .
Therefore, the total number of TLB misses ( - � ) is

- � �#� " � � I
� ��� �

I
� ��� � " � � I��� � I

� ��� � (2)

Compared with the 5-loop TMM with canonical layout,
TLB misses decrease by a factor of �����	� using the 6-loop
TMM with block data layout.

3.2. Cache Performance

For a given cache size, tiling transforms the loop nest so
that the temporal locality can be better exploited. This re-
duces capacity misses. However, since most of the state-
of-the-art architectures have direct-mapped or small set-
associative caches, tiling can suffer from considerable con-
flict misses as shown in Figure 5 (a). This degrades the over-
all performance.

We can reorganize a canonical layout to a block layout
for tiled computations. Then as shown in Figure 5 (b), a self
interference miss does not occur since all elements in a block
can be mapped into contiguous locations in cache without
any conflict.

In general, cache miss analysis for direct mapped cache
with canonical layout is complicated because the self in-

� � �	 	

� �� �� �

CACHE

(a) Canonical layout

CACHE

 � �� �
� � � �
(b) Block data layout

Figure 5. Example of conflict misses

terference misses cannot be quantified easily. Cache per-
formance analysis of tiled algorithm was discussed in [11].
The cache performance of tiling with copying optimization
was also presented. We observe that the behavior of cache
misses for tiled access patterns on block layout is similar to
that of tiling with copying optimization on canonical layout.
Also, self-interference misses can be easily quantified when
block data layout is used. According to these, we have de-
rived the total number of cache misses for 6-loop TMM with
block data layout. Detailed proof can be found in [16]. For
� ��� level cache with line size

� ��� and cache size 
���� , the total
number of cache misses ( � � � ) is:

� � �5H
����������� ����������
���������� �D�� ��� E � ����� F � � ���� G !��� " � �� � 	 D F�# ����� !���%$

for ��� � 
�������������� 	 D !��� � �D 4 �  !���D � � �
4 �� � # ����� !���&$
for
� 
���� � ��� � � 
�������������� I � �D ��'�I � ���D)(*� D F � ��� !���+",$

for
� � 
���� � �

(3)

3.3. Block Size Selection

To achieve high performance, it is significant to select the
block size of block data layout. In this section, we describe
an approach for selecting the block size. In a multi-level
memory hierarchy system, it is difficult to predict the execu-
tion time ( -.-0/!- ) of a program. But, -.-0/!- is proportional to
the total miss cost of TLB and cache. In order to minimize-�-0/!- , we will evaluate and minimize the total miss cost for
both TLB and 1 -level caches. We have:� � � - � 9 � �� � � #

�1$ �
� � �02�� F � (4)

where
� � denotes the total miss cost, � � � is the number

of misses in the � ��� level cache, - � is the number of TLB
misses, 2�� is the cost of a hit in the � ��� level cache, and

� �� �
is the cost of a TLB miss. The �31���I � ��� level cache is the
main memory. It is assumed that all data reside in the main
memory ( � �  F � ��� ).

For a simple 2-level memory hierarchy that consists of
only one level cache and TLB, the total miss cost (denoted
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Figure 6. Miss cost estimation for 6-loop TMM (Ul-
traSparc II parameters)

as
� �$��� � ) in Eq. (4) reduces to:� �$��� � � - � 9 � �� � � � � 9 2 � � (5)

where 2 � is the access cost of main memory. In the above
estimation,

� �� � and � � are substituted with Eq.(2) and
Eq.(3), respectively. Using the derivative of

� ����� � , the op-
timal block size, � ��� � , which minimizes the total miss cost
caused by L1 cache and TLB misses is given as

����� � H
���� � � ���3�	��
�� ��� ������� � ���	� F � � ��	� !�	� � 2 � " 
�� �� 2 � � (6)

We now extend this analysis to determine a range for op-
timal block size in a multi-level memory hierarchy that con-
sists of TLB and two levels of cache. The miss cost is classi-
fied into two groups: miss cost caused by TLB and L1 cache
misses and miss cost caused by L2 misses. Figures 6 (a)
and (b) show the miss cost estimated through Eqs.(2) and
(3). Figure 6(a) represents the individual cost of TLB, L1,
and L2 miss, using UltraSparc II parameters. Figure 6(b)
shows the change of estimated total miss costs based on dif-
ferent ratios of L1 cache miss penalty ( 2 � ) and L2 cache
miss penalty ( 2 � ). Using Eq.(6), we discuss the total miss
cost for 3 ranges of block size:

Lemma 3.2 For ��� � ��� � ,
� �����	��� � ��������� � � .

Proof: According to the derivatives, � ����
 �	�� D � � and� ��� �� D ��� for � � ����� � , TLB, L1, and L2 miss costs in-
crease as block size decreases. This is shown in Figure 6(a),
thereby increasing the total miss cost. Therefore, the opti-
mal block size cannot be in the range ��� � ��� � . ;
Lemma 3.3 For ��� � 
�� � , � �����	��� � ��� � 
�� � � .
Proof: In the range ��� � 
�� � , the change in TLB miss
cost is negligible as the block size increases. Since block

size is larger than L1 cache size, self-interferences occur in
this range. The number of L1 cache misses drastically in-
creases as shown in Figure 6(a). For

� 
�� � � � �
� � 
�� � ,

although the number of L2 cache misses decreases ( � ��� �� D �
� ), the ratio of derivatives of Eq.( 3) for L1 and L2 misses is
as follows:����� 2 � � ������ D2 � � ��� �� D

����� � 2 �2 �
������

� ����	� � 	 !�	� � 	  � �D � 4 �D � �� ���� � � 	 !� � 4 � ��� � ��� � F � � �� � !� � " �D � �
������ ��I��

Therefore, the total miss cost increases for
� 
�� � � � �� � 
�� � . For � % � � 
�� � , there is no reuse in L1 cache.

Thus, the L1 cache miss cost saturates. As shown in Fig-
ure 6(b), - � ���	����- � � � 
�� � � for � % � � 
�� � , because
L1 miss cost is dominantly larger than L2 miss cost and TLB
miss cost for � % � � 
�� � . Therefore, the optimal block size
cannot be in the range ��� � 
�� � . ;
Detailed proof of Lemma 3.3 can be found in [16].

Theorem 3.2 The optimal block size � ��� � satisfies � ��� � �� ��� � � � 
�� � .
Proof: This follows from Lemma 3.2 and 3.3. Therefore,
an optimal block size that minimizes the total miss cost is
located in � ��� � � � ��� � � � 
�� � . We select a block size that
is a multiple of

� � � (L1 cache line size) in this range. ;
4 Experimental Results

To verify our TLB performance analysis, simulations for
the generic access pattern (accessing along all rows and
then all columns) were performed. Furthermore, three ap-
plications (matrix multiplication, LU decomposition, and
Cholesky factorization) are tested through simulations and
executions on real platforms to confirm our analysis.

4.1 Simulations of generic access pattern

To verify our TLB performance analysis, simulations
were performed using the SimpleScalar simulator [3]. It is
assumed that the page size is  "! �)+$#&% and the data TLB is
fully set-associative with 64 entries (similar to the data TLB
in UltraSparc 2.) Double precision data points are assumed.
A ' ���(' � block size is considered for block data layout.

Table 1 compares the TLB misses of block data layout
with canonical layout when the matrix is accessed with a
generic access pattern. Table 1 (a) shows the TLB misses
for accesses along all rows and then all columns. For small
problem sizes, TLB misses with block data layout are con-
siderably less than those with canonical layout. For prob-
lem size I � � � �:I � � � , TLB entries used in a column(row)
access are almost fully reused in the next column(row) ac-
cess, thereby ����
��� � � in Eq.(1) becoming relatively large.
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Table 1. Comparison of TLB misses

Layout 1024 2048 4096

Block Layout 2081 81794 1196033
Canonical Layout 1049601 4198401 16793601

(a) Along all rows and then all columns

Layout 1024 2048 4096

Block Layout 64140 273482 1080986
Canonical Layout 1053606 4208690 16822675

(b) Arbitrary permutation of row and column accesses

Layout 1024 2048 4096

Block Layout 64501 274473 1080465
Canonical Layout 1053713 4208681 16822395

(c) Arbitrary permutation of all rows followed by arbitrary
permutation of all columns accesses

The number of TLB misses using block data layout is 504.37
times less than that using canonical layout. It is also less
than the lower bound obtained from Theorem 2.1. For
larger problem sizes, ����
��� � � in Eq.(1) becomes negligi-
ble, since the TLB entries cannot be reused. Hence the
total number of TLB misses approaches the lower bound.
As shown in Table 1 (a), TLB misses with block data lay-
out are upto 16 times less compared with canonical layout.
Table 1 (b) and (c) confirm Corollary 2.1 and 2.2. With
these access patterns, TLB entries referenced during one
row(column) access are not reused when accessing the next
row(column). The number of TLB misses with block data
layout approaches the lower bound on TLB misses.

Table 2 shows simulation results for tiled row and column
accesses. Block size is set to be the same as the tile size.
As shown in Table 2, the number of TLB misses conform
our analysis from Theorem 3.1. The number of TLB misses
with block data layout is 91% less than that with canonical
layout.

4.2 Experimental results for various applications

To show the effect of block data layout, we performed
simulations and experiments on the following applications:
tiled matrix multiplication(TMM), LU decomposition, and
Cholesky factorization(CF). The performance of tiling with

Table 2. TLB misses for all tiled row accesses fol-
lowed by all tiled column accesses

Layout 1024 2048 4096

Block Layout 2081 12289 49153
Canonical Layout 33794 139265 561025

block data layout (tiling+BDL) is compared with other op-
timization techniques: tiling with copying(tiling+copying),
and tiling with padding(tiling+padding). For tiling+BDL,
the tile size (in tiling) is chosen to be the same as the block
size in block data layout. Initial and final data layouts are
canonical layouts. All the costs in performing data layout
transformations (from canonical layout to block data layout
and vice versa) are included in the reported results. As stated
in [11], we observed that the copying technique cannot be
applied efficiently to LU and CF applications, since copy-
ing overhead offsets the performance improvement. Hence
we do not consider tiling+copying for these applications. In
all our simulations and experiments, the data elements are
double-precision.

4.2.1 Simulation results

To show the performance of TLB and caches using
tiling+BDL, simulations were performed using the Sim-
pleScalar simulator [3]. The problem size was I � � � � I � � � .
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Figure 8. Total miss cost for TMM using UltraSparc
II parameters

Figures 7 and 8 show the TMM simulation results , based
on UltraSparc II parameters. As shown in Figure 7(a),
Tiling+BDL reduced 91–96% of TLB misses. This confirms
our analysis presented in Section 3.1. Figure 8 shows the
total miss cost (calculated from Eq. (4)) for TMM. L1, L2,
and TLB miss penalties were assumed to be 6, 24, and 30
cycles, respectively. Figure 8(a) shows the comparison of
the total miss cost of tiling+BDL with that of tiling+copying
and tiling+padding. The comparison shows that tiling+BDL
results in the smallest total miss cost. Specifically, the TLB
miss cost of tiling+BDL is negligible compared with L1 and
L2 miss costs. Figure 8(b) shows the effect of block size on
the total miss cost for TMM using tiling+BDL. As discussed
in Section 3.3, � ��� � � ' ��� � , � 
�� � � ��� � ' , and

� � � �
�

us-
ing this architecture parameters. Theorem 3.2 suggests the
range for optimal block size to be 36–44. Simulation results
show that the optimal block size for this architecture was 44.
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Figure 7. Simulation results for TMM using UltraSparc II parameters
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Figure 9. Simulation results for LU using Pentium III parameters

As shown in Figure 8(b), our proposed range is much tighter
than the search range of ATLAS.

Figure 9 and 10 present simulation results for LU using
Intel Pentium III parameters. Similar to TMM, the num-
ber of TLB misses for tiling+BDL was almost negligible
compared with that for tiling+padding as shown in Fig-
ure 9(a). For both techniques, L1 and L2 cache misses were
reduced considerably because of 4-way set-associativity.
For tiling+padding, when the block size was larger than
L1 cache size, the padding algorithm in [15] suggested
a pad size of 0. There is essentially no padding effect,
thereby drastically increasing L1 and L2 cache misses. Fig-
ure 10 shows the block size effect on total miss cost using
tiling+padding and tiling+BDL. Tiling+padding reduced L1
and L2 cache miss costs considerably. However, TLB miss
costs were still significantly high, affecting the overall per-
formance. As discussed in Section 3.3, the suggested range
for optimal block size is 32–44. Simulations validate that
the optimal block size achieving the smallest miss cost lo-
cates in the range selected using our approach.

4.2.2 Application execution results on real platforms

To verify our block size selection and the perfor-
mance improvements using block data layout, we
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Figure 10. Effect of block size on LU decomposi-
tion using Pentium III parameters

performed experiments on several platforms. The pa-
rameters are tabulated in Table 3. gcc compiler was
used in these experiments. The compiler optimization
flags were set to “-fomit-frame-pointer -O3
-funroll-loops”. Execution time was the user pro-
cessor time measured by sys-call clock(). The problem
sizes ranged from I � � ��� I � � � to I�� � ���:I�� � � .

The experimental results of TMM using tiling+BDL on
UltraSparc II is shown in Fig. 11. Fig. 11(a) shows the best
block size for TMM with respect to different problem sizes.
For each problem size, we performed experiments by test-
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Table 3. Features of various experimental platforms
Platforms Speed L1 cache L2 cache TLB

(MHz) Size Line Ass. Size Line Ass. Entry page Ass.
( � � ) ( ������� ) ( � � ) ( ������� ) ( � � )

Alpha 21264 500 64 64 2 4096 64 1 128 8 128
UltraSparc II 400 16 32 1 2048 64 1 64 8 64
UltraSparc III 750 64 32 4 4096 64 4 512 8 2

Pentium III 800 16 32 4 512 32 4 64 4 4
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Figure 11. Experimental results for TMM on Ultra-
SPARC II
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Figure 12. Experimental results for TMM on Alpha
21264

ing block sizes ranging from 8–80. In all these tests, we
found that the optimal block size for each problem size was
in the range given by Theorem 3.2. This is shown in Fig-
ure 11(a). We also tested ATLAS. Through a wide search
ranging from 16 to 44, ATLAS found 36 and 40 as the
optimal block sizes. These blocks lie in the range given
by Theorem 3.2. These experiments confirm that our ap-
proach proposes a reasonably good range for block size se-
lection. Figures 11(b) show the execution time comparison
of tiling+BDL with tiling+copying and tiling+padding. Fig-
ure 12–14 show experimental results for 3 different appli-
cations on 3 different platforms. Tiling+BDL technique is
faster than using other optimization techniques, for almost
all problem sizes and on all the platforms. These results con-
firm our analysis. More experimental results are available
in [16].
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Figure 13. Experimental results for LU on Ultra-
SPARC III
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Figure 14. Experimental results for Cholesky fac-
torization on Pentium III

5 Concluding Remarks

This paper studied a critical problem in understanding
the performance of algorithms on state-of-the-art machines
that employ multi-level memory hierarchy. We presented a
lower bound on the number of TLB misses for any data lay-
out and showed that block data layout achieves this bound.
The number of TLB misses using tiling and block data lay-
out were considerably reduced compared with copying or
padding techniques. We showed that block data layout with
tiling leads to improved overall memory hierarchy perfor-
mance compared with other techniques. Further, we pro-
posed a tight range for block size in ATLAS using our per-
formance analysis. Our analysis was verified using simula-
tions as well as actual execution results.

This work is part of the Algorithms for Data IntensiVe

WallacJR
109



Applications on Intelligent and Smart MemORies (ADVI-
SOR) Project at USC [1]. In this project we focus on de-
veloping algorithmic design techniques for mapping appli-
cations to architectures. Through this we understand and
create a framework for application developers to exploit
features of advanced architectures to achieve high perfor-
mance.
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Abstract

Recently, several experimental studies have been conducted on block data layout in con-

junction with tiling as a data transformation technique to improve cache performance. In this

paper, we analyze cache and TLB performance of such alternate layouts (including block data

layout and Morton layout) when used in conjunction with tiling. We derive a tight lower bound

on TLB performance for standard matrix access patterns, and show that block data layout and

Morton layout achieve this bound. To improve cache performance, block data layout is used in

concert with tiling. Based on the cache and TLB performance analysis, we propose a data block

size selection algorithm that �nds a tight range for optimal block size. To validate our analysis,

we conducted simulations and experiments using tiled matrix multiplication, LU decomposition

and Cholesky factorization. For matrix multiplication, simulation results using UltraSparc II

parameters show that tiling and block data layout, with a block size given by our block size

selection algorithm, reduces upto 93% of TLB misses compared with other techniques (copying,

padding, etc.). L1 and L2 cache misses are also reduced. Experiments on several platforms (Ul-

traSparc II and III, Alpha, and Pentium III) show that tiling with block data layout achieves up

to 50% performance improvement over other techniques that use conventional layouts. Morton

layout is also analyzed and compared with block data layout. Experimental results show that

matrix multiplication using block data layout is upto 15% faster than that using Morton data

layout.

�Supported by the DARPA Data Intensive Systems Program under contract F33615-99-1-1483 monitored by

Wright Patterson Air force Base and in part by an equipment grant from Intel Corporation.
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1 Introduction

The increasing gap between memory latency and processor speed is a critical bottleneck in achieving

high performance. The gap is typically bridged by a multi-level memory hierarchy that can hide

memory latency. This memory hierarchy consists of multi-level caches, which are typically on- and

o�- chip caches. To improve the e�ective memory hierarchy performance, various hardware solutions

have been proposed [3, 7, 9, 10, 19]. Recent processors such as Intel Merced [24] provide increased

programmer control over data placement and movement in a cache-based memory hierarchy, in

addition to providing some memory streaming hardware support for media applications. To exploit

these features, it is important to understand the e�ectiveness of control and data transformations.

Along with hardware solutions, compiler optimization techniques have received considerable

attention [14, 15, 22]. As the memory hierarchy gets deeper, it is critical to e�ciently manage

the data. To improve data access performance, one of the well-known optimization techniques is

tiling. Tiling transforms loop nests so that temporal locality can be better exploited for a given

cache size. However, tiling focuses only on the reduction of capacity cache misses by decreasing

the working set size. Cache in most state-of-the-art machines is either direct-mapped or small

set-associative. Thus, it su�ers from considerable conict misses, thereby degrading the overall

performance [6, 12]. To reduce conict misses, copying [12, 25] and padding [16, 20] techniques with

tiling have been proposed. However, most of these approaches target mainly the cache performance,

paying less attention to the Translation Look-aside Bu�er (TLB) performance. As problem sizes

become larger, TLB performance becomes more signi�cant. If TLB thrashing occurs, the overall

performance will be drastically degraded [23]. Hence, both TLB and cache must be considered in

optimizing application performance.

Most previous optimizations, including tiling, concentrate on single-level cache [6, 12, 16, 20,

25]. Multi-level memory hierarchy has been considered by a few researchers. For improving multi-

level memory hierarchy performance, a new compiler technique is proposed in [27] that transforms

loop nests into recursive form. However, only multi-level caches were considered [21, 27] with no

emphasis on TLB. It was proposed in [13] that cache and TLB performance be considered in concert

to select the tile size. In this analysis, TLB and cache were assumed to be fully-set associative.

However, the cache is direct or small set-associative in most of the state-of-the-art platforms.

Some recent work [4, 11, 12, 17, 18, 25] proposed changing the data layout to match the

data access pattern, to reduce cache misses. It was proposed in [11] that both data and loop

transformation be applied to loop nests for optimizing cache locality. In [4], conventional (row or

column-major) layout is changed to a recursive data layout, referred to as Morton layout, which

matches the access pattern of recursive algorithms. This data layout was shown to improve the

memory hierarchy performance. This was con�rmed through experiments; we are not aware of any

formal analysis.

The ATLAS project [26] automatically tunes several linear algebra implementations. It uses

block data layout with tiling to exploit temporal and spacial locality. Input data, originally in

column major layout, is re-mapped into block data layout before the computation begins. The

combination of block data layout and tiling has shown high performance on various platforms.

However, the selection of the optimal block size is done empirically at compile time by running

several tests with di�erent block sizes.
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In this paper, we study block data layout as a data transformation to improve memory hierarchy

performance. In block data layout, a matrix is partitioned into sub-matrices called blocks. Data

elements within one such block are mapped onto contiguous memory. These blocks are arranged in

row-major order. First, we analyze the intrinsic TLB performance of block data layout. We then

analyze the TLB and cache performance using tiling and block data layout. Based on the analysis,

we propose a block size selection algorithm. Morton data layout is also discussed as a variant of

block data layout. The contributions of this paper are as follows:

� We present a lower bound analysis of TLB performance. Further, we show that block data

layout intrinsically has better TLB performance than row-major layout (Section 2). As an

abstraction of matrix operations, the cost of accessing all rows and all columns is analyzed.

Compared with row major layout, we show that the number of TLB misses is improved by

O(
p
Pv) where Pv is the page size.

� We present TLB and cache performance analysis when tiling is used with block data (Sec-

tion 3.1 and 3.2). In tiled matrix multiplication, block data layout improves the number of

TLB misses by a factor of B, where B is the block size. Cache performance analysis is also

presented. We validate our analysis through simulations using SimpleScalar [2].

� On the basis of our cache and TLB analysis, we propose a block size selection algorithm

(Section 3.3). The best block sizes found by ATLAS fall in the range given by our algorithm.

� We validate our analysis through simulations and measurements using matrix multiply, LU

decomposition and Cholesky factorization (Section 4).

� We compare the performance of block data layout and Morton data layout. Block size se-

lection for Morton data layout is limited. This limitation causes the performance of Morton

data layout to be worse than that of block data layout. Experimental results on UltraSparc

II and Pentium III show that matrix multiplication and LU decomposition executions using

block data layout were up to 15.8% faster than that obtained using Morton data layout.

The rest of this paper is organized as follows. Section 2 describes block data layout and gives

analysis of its TLB performance. Section 3 discusses the TLB and cache performance when tiling

and block data layout are used in concert. A block size selection algorithm is described based

on this analysis. Section 4 shows simulation and experimental results. Concluding remarks are

presented in Section 5.

2 Block Data Layout and TLB Performance

In this paper, we assume the architecture parameters to be �xed (e.g. cache size, cache line size,

page size, TLB entry capacity, etc.). The following notations are used in this paper. Stlb denotes

the number of TLB entries. Pv denotes virtual page size. It is assumed that the TLB is fully

set-associative with Least-Recently-Used(LRU) replacement policy. Block size is B � B, where it

is assumed B2 = kPv . Sci is the size of the i
th level cache. Its line size is denoted as Lci. Cache is

assumed to be direct-mapped and its replacement policy is also LRU.
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Figure 1: Various data layouts: block size 2� 2 for (b) and (c)

In Section 2, we analyze the TLB performance of block data layout. We show that block data

layout has better intrinsic TLB performance than conventional data layouts.

2.1 Block Data Layout

To support multi-dimensional array representations, most programming languages provide a map-

ping function, which converts an array index to a linear memory address. In current programming

languages, the default data layout is row-major or column-major, denoted as canonical layouts [5].

Both row-major and column-major layouts have similar drawbacks. For example, consider a large

matrix stored in row-major layout. Due to large stride, column accesses can cause cache conicts.

Further, if every row in a matrix is larger than the size of a page, column accesses can cause TLB

trashing, resulting in drastic performance degradation.

In block data layout, a large matrix is partitioned into sub-matrices. Each sub-matrix is a

B � B matrix and all elements in the sub-matrix are mapped onto contiguous memory locations.

The blocks are arranged in row-major order. Another data layout of recent interest is Morton

data layout [4]. Morton data layout divides the original matrix into four quadrants and lays out

these sub-matrices contiguously in the memory. Each of these sub-matrices is further recursively

divided and laid out in the same way. At the end of recursion, elements of the sub-matrix are

stored contiguously. This is similar to the arrangement of elements of a block in block data layout.

Morton data layout can thus be considered as a variant of the block data layout. They only di�er

in the order of blocks. Figure 1 shows block data layout and Morton data layout with block size

2� 2. Due to the similarity, the following TLB analysis holds true for Morton data layout also.

2.2 TLB Performance of Block Data Layout

In this section, we present a lower bound on the TLB misses for any data layout. We discuss

the intrinsic TLB performance of block data layout using a generic access pattern. We give an

analysis on the TLB performance of block data layout and show improved performance compared

with conventional layouts. Throughout this section, we consider an N �N array.

3
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2.2.1 A Lower Bound on TLB Misses

In general, most matrix operations consist of row and column accesses, or permutations of row and

column accesses. In this section, we consider an access pattern where an array is accessed �rst

along all rows and then along all columns. The lower bound analysis of TLB misses incurred in

accessing the data array along all the rows and all the columns is as follows.

Theorem 2.1 For accessing an array along all the rows and then along all the columns, the asymp-

totic minimum number of TLB misses is given by 2 N
2

p
Pv
.

Proof: Consider an arbitrary mapping of array elements to pages. Let Ak = fij at least one

element of row i is in page k g: Similarly, let Bk = fjj at least one element of column j is in page

k g: Let ak = jAkj and bk = jBk j. Note that ak � bk � Pv : Using the mathematical identity that

the arithmetic mean is greater than or equal to the geometric mean ( ak + bk � 2
p
Pv ), we have:

N
2

PvX
k=1

(ak + bk) � 2
N2

Pv

p
Pv:

Let xi (yj) denote the number of pages where elements in row i (column j) are scattered. The

number of TLB misses in accessing all rows consecutively and then all columns consecutively is

given by Tmiss �
P

N

i=1(xi � O(Stlb)) +
P

N

j=1(yj � O(Stlb)): O(Stlb) is the number of page entries

required for accessing row i (column j) that are already present in the TLB. Page k is accessed

ak times by row accesses, thus,
P

N

i=1 xi =
PN

2

Pv

k=1 ak. Similarly,
P

N

j=1 yj =
PN

2

Pv

k=1 bk. Therefore, the

total number of TLB misses is given by

Tmiss �

N
2

PvX
k=1

(ak + bk)� 2N �O(Stlb) � 2� N2

p
Pv

� 2N �O(Stlb):

As the problem size (N) increases, the number of pages accessed along one row (column) becomes

larger than the size of TLB (Stlb). Thus the number of TLB entries that are reused is reduced

between two consecutive row (column) accesses. Therefore the asymptotic minimum number of

TLB misses is given by 2 N
2

p
Pv

. �
We obtained a lower bound on TLB misses for any layout when data are accessed along all

rows and then along all columns. This lower bound of TLB misses also holds when data is accessed

along an arbitrary permutation of all rows and columns.

Corollary 2.1 For accessing an array along an arbitrary permutation of row and column accesses,

the asymptotic minimum number of TLB misses is given by 2 N
2

p
Pv
.

2.2.2 TLB Performance

In this section, we consider the same access pattern as discussed in Section 2.2.1. Consider a given

N �N array stored in a canonical layout. Without loss of generality, canonical layout is assumed
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Table 1: Comparison of TLB misses

(a) Along all rows and then all columns

Layout 1024 2048 4096

Block Layout 2081 81794 1196033

Morton Layout 2072 274473 1081466

Canonical Layout 1049601 4198401 16793601

(b) Arbitrary permutation of row and column accesses

Layout 1024 2048 4096

Block Layout 64140 273482 1080986

Morton Layout 64257 273477 1080955

Canonical Layout 1053606 4208690 16822675

(c) Arbitrary permutation of all rows followed by arbitrary permutation of all columns accesses

Layout 1024 2048 4096

Block Layout 64501 274473 1080465

Morton Layout 64813 274472 1081469

Canonical Layout 1053713 4208681 16822395

to be row-major layout. During the �rst pass (row accesses), the memory pages are accessed

consecutively. Therefore, TLB misses caused by row accesses is equal to N
2

Pv
. During the second

pass (column accesses), elements along the column are assigned to N di�erent pages. Hence, a

column access causes N TLB misses. Since N � Stlb, all N column accesses result in N2 TLB

misses. The total number of TLB misses caused by all row accesses and all column accesses is thus
N

2

Pv
+N2. Therefore, in canonical layout, TLB misses drastically increase due to column accesses.

Compared with canonical layout, block data layout has better TLB performance. The following

theorem shows that block data layout minimizes the number of TLB misses.

Theorem 2.2 For accessing an array along all the rows and then along all the columns, block data

layout with block size
p
Pv �

p
Pv minimizes the number of TLB misses.

Detailed proof of this theorem is presented in Appendix A. In general, the number of TLB misses

for a B � B block data layout is kN
2

B
+ N

2

B
. It is reduced by a factor of

(Pv+1)B

Pv(k+1)
(� B

k+1
) when

compared with canonical layout. When B =
p
Pv (k = 1), this number approaches the lower

bound shown in Theorem 2.1.

This theorem holds true even when data in block data layout is accessed along an arbitrary

permutation of all rows and columns.

Corollary 2.2 For accessing an array along an arbitrary permutation of rows and columns, block

data layout with block size
p
Pv �

p
Pv minimizes the number of TLB misses.

Similar to Theorem 2.2 and Corollary 2.2, the number of TLB misses is minimized when blocks

are stored in Morton data layout and elements are accessed along rows and columns.

Corollary 2.3 For accessing an N � N array along along all the rows and then along all the

columns (or along an arbitrary permutation of rows and columns), Morton data layout with block

size
p
Pv �

p
Pv minimizes the number of TLB misses.

To verify our analysis, simulations were performed using the SimpleScalar simulator [2]. It is

assumed that the page size is 8KByte and the data TLB is fully set-associative with 64 entries
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for kk=0 to N by B
    for jj=0 to N by B
        for i=0 to N
            for k=kk to min(kk+B-1,N)
                r = X(i,k)
                for j=jj to min(jj+B-1,N)
                    Z(i,j) += r*Y(k,j)

(a) 5-loop tiled matrix multiplication

for jj=0 to N by B
    for kk=0 to N by B
        for ii=0 to N by B
            for i=ii to min(ii+B-1,N)
                for k=kk to min(kk+B-1,N)
                    r = X(i,k)
                    for j=jj to min(jj+B-1,N)
                        Z(i,j) += r*Y(k,j)

(b) 6-loop tiled matrix multiplication

Figure 2: Tiled matrix multiplication

(similar to the data TLB in UltraSparc 2.) Double precision data points are assumed. The block

size is set to 32. Table 1 shows the comparison of TLB misses using block data layout with using

canonical layout. Table 1 (a) shows the TLB misses for the \�rst all rows and then all columns"

access. For small problem sizes, TLB misses with block data layout are considerably less than those

with canonical layout. This is due to the fact that TLB entries used in a column(row) access are

almost fully reused in the next column(row)access. For a problem size of 1024 � 1024, a 504.37

times improvement in the number of TLB misses is obtained with block data layout. This number

is much less than the lower bound obtained from Theorem 2.1. This is because the TLB entries are

reused for this problem size. For larger problem sizes the TLB entries cannot be reused. The total

number of TLB misses approaches the lower bound. For these large problem sizes, TLB misses

with block data layout are upto 16 times less compared with canonical layout.

To verify Corollary 2.1 and 2.2, two sets of access patterns were simulated: an arbitrary

permutation of all rows and columns, and an arbitrary permutation of all rows followed by an

arbitrary permutation of all columns. With these access patterns, TLB entries referenced during

one row(column) access are not reused when accessing the next row(column). The number of TLB

misses with block data layout approaches the lower bound on TLB misses. The results are shown

in Table 1 (b) and (c). Morton data layout shows a performance similar to block data layout.

Even though block data layout has better TLB performance compared with canonical layouts

with generic access pattern, it alone does not reduce cache misses. The data access pattern of

tiling matches well with block data layout. In the following section, we discuss the performance

improvement of TLB and caches when block data layout is used in conjunction with tiling.

3 Tiling and Block Data Layout

Tiling is a well-known optimization technique that improves cache performance. Tiling transforms

the loop nest so that temporal locality can be better exploited for a given cache size. Consider an

N � N matrix multiplication represented as Z = XY. The working set size for the usual 3-loop

computation is N2 + 2N . For large problems, the working set size is larger than the cache size,

resulting in severe cache thrashing. To reduce cache capacity misses, tiling transforms the matrix

multiplication to a 5-loop nest tiled matrix multiplication (TMM) as shown in Figure 2(a). The

working set size for this tiled computation is B2 + 2B. To e�ciently utilize block data layout, we

consider a 6-loop TMM as shown in Figure 2(b) instead of a 5-loop TMM.
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B

B

(a) Tiled row access

B

B

(b) Tiled column access

Figure 3: Tiled accesses

3.1 TLB Performance

In this section, we show the TLB performance improvement of block data layout with tiling. To

illustrate the e�ect of block data layout on tiling, we consider a generic access pattern abstracted

from tiled matrix operations. The access pattern is shown in Figure 3. The tile size is equal to B.

Figure 3.

With canonical layout, TLB misses will not occur when accessing consecutive tiles in the same

row, if B � Stlb. Hence, the tiled accesses along the rows generate N
2

Pv
TLB misses. This is the

minimum number of TLB misses incurred in accessing all the elements in a matrix. However,

tiled accesses along columns cause considerable TLB misses. B page table entries are necessary

for accessing each tile. For all tiled column accesses, the total number of TLB misses is Tcol =

B � N

B
� N

B
= N

2

B
: It is reduced by a factor of B compared with the number of TLB misses for all

column accesses without tiling (see Section 2.2).

The total number of TLB misses are further reduced when block data layout is used in concert

with tiling, as shown in Theorem 3.1. Throughout this paper, the block size of block data layout is

assumed to be the same as the tile size so that the tiled access pattern matches block data layout.

In block data layout, a 2-dimensional block is mapped onto 1-dimensional contiguous memory

locations. A block extends over several pages, as shown in Figure 4 for an example of block size

B2 = 1:7Pv. To analyze TLB misses for column accesses using block data layout, the average

number of pages in a block is required.

vP

vPB 7.12  =

vP3.0

(a) over 2 pages

vP

vPB 7.12  =

vP3.0

(b) over 3 pages

Figure 4: Blocks extending over page boundaries

Lemma 3.1 Consider an array stored in block data layout with block size B�B, where B2 = kPv.

The average number of pages per block is given by k + 1.

Proof: For block size kPv , assume that k = n+f , where n is a non-negative integer and 0 � f < 1.
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Table 2: TLB misses for all tiled row accesses followed by all tiled column accesses

Layout 1024 2048 4096

Block Layout 2081 12289 49153

Canonical Layout 33794 139265 561025

The probability that a block extends over n + 1 contiguous pages is 1� f . The probability that a

block extends over n+ 2 contiguous pages is f . Therefore, the average number of pages per block

in block data layout is given by: (1� f)� (n+ 1) + f � (n+ 2) = k + 1: �

Theorem 3.1 Assume that an N � N array is stored using block data layout. For tiled row and

column accesses, the total number of TLB misses is (2 + 1
k
)N

2

Pv
.

Proof: Blocks in block data layout are arranged in row-major order. So, a page overlaps between

two consecutive blocks that are in the same row. The page is continuously accessed. The number

of TLB misses caused by all tiled row accesses is thus N
2

Pv
, which is the minimum number of TLB

misses. However, no page overlaps between two consecutive blocks in the same column. Therefore,

each block along the same column goes through (k+1) di�erent pages according to Lemma 3.1. The

number of TLB misses caused by all tiled column accesses is thus Tcol = (k+1)�N

B
�N

B
= (k+1) N

2

kPv
:

Therefore, the total TLB misses caused by all row and all column accesses is Tmiss = (2+ 1
k
)N

2

Pv
: �

For tiled access, the number of TLB misses using canonical layout is N
2

Pv
+ N

2

B
, where B =

p
kPv.

Using Theorem 3.1, compared with canonical layout, block data layout reduces the number of TLB

misses by
p
kPv+

p
k

2k+1 = B+
p
k

2k+1 .

To verify our analysis, simulations for tiled row and column accesses were performed using

the SimpleScalar simulator. The simulation parameters are equal to those in Section 2. A 32� 32

block size was considered. The block size is the same as the page size. Table 2 shows TLB misses

for 3 di�erent cases. For problem sizes of 2048� 2048 and 4096� 4096, the number of TLB misses

conform our analysis in Theorem 3.1. The number of TLB misses with block data layout is 91%

less than that with canonical layout. For a problem size of 1024 � 1024, TLB misses with block

data layout is 2081, which is very close to the minimum number of TLB misses (2048). This is a

special case in which each block starts on a new page.

A similar analytical result can be derived for real applications. Consider the 5-loop TMM

with canonical layout in Figure 2 (a). Array Y is accessed in a tiled row pattern. On the other

hand, arrays X and Z are accessed in a tiled column pattern. A tile of each array is used in the

inner loops (i; k; j). The number of TLB misses for each array is equal to the average number of

pages per tile, multiplied by the number of tiles accessed in the outer loops (kk; jj). The average

number of pages per tile is B + B
2

Pv
. Therefore, the total number of TLB misses is given by:

2N3( 1
B2 +

1
BPv

) +N2( 1
B
+ 1

Pv
).

Consider the 6-loop TMM on block data layout as shown in Figure 2 (b). A B � B tile of

each array is accessed in the inner loops (i; k; j) with block layout. The number of TLB misses for

each array is equal to the average number of pages per block multiplied by the number of blocks
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Figure 5: Comparison of TLB misses

from simulation and estimation
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Figure 6: Comparison of TLB misses

using tiling+BDL and tiling only

accessed in the outer loops (ii; kk; jj). According to Lemma 3.1, the average number of pages per

block is B
2

Pv
+ 1(= k + 1). Therefore, the total number of TLB misses (TM) is

TM =

 
B2

Pv
+ 1

!(
2

�
N

B

�3
+

�
N

B

�2)
= 2N3

�
1

BPv
+

1

B3

�
+N2

�
1

Pv
+

1

B2

�
: (1)

Compared with the 5-loop TMM with canonical layout, TLB misses decrease by a factor of O(B)

using the 6-loop TMM. Note that the 6-loop TMM uses block data layout.

To verify our TLB miss estimation, simulations on the 6-loop TMM were performed. The

problem size was �xed at 1024� 1024. Simulation parameters were the same as those in Section 2.

Figure 5 compares our estimations (given by Eq. (1)) with the simulation results. Figure 6 shows

that block data layout reduced TLB misses considerably compared with tiling.

3.2 Cache Performance

For a given cache size, tiling transforms the loop nest so that the temporal locality can be better

exploited. This reduces the capacity misses. However, since most of the state-of-the-art archi-

tectures have direct-mapped or small set-associative caches, tiling can su�er from considerable

conict misses that degrade the overall performance. Figure 7 (a) shows cache conict misses.

These conict misses are determined by cache parameters such as cache size, cache line size and

set-associativity, and runtime parameters such as array size and block size. Performance of tiled

computations is thus sensitive to these runtime parameters.

If the data layout is reorganized from a canonical layout to a block layout (assuming tile size

is same as block size) before tiled computations start, the entire data that is accessed during a

tiled computation will be localized in a block. As shown in Figure 7 (b), a self interference miss

does not occur if the block is smaller than the cache since all elements in a block can be stored in

contiguous memory locations.
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Figure 8: Comparison of cache misses from simulation and estimation for 6-loop TMM

In general, cache miss analysis for direct mapped cache with canonical layout is complicated

because the self interference misses cannot be quanti�ed easily. Cache performance analysis of tiled

algorithm was discussed in [12]. The cache performance of tiling with copying optimization was

also presented. We observe that the behavior of cache misses for tiled access patterns on block

layout is similar to that of tiling with copying optimization on canonical layout. We have derived

the total number of cache misses for 6-loop TMM (which uses block data layout). Detailed proof

can be found in Appendix B. For ith level cache with line size Lci and cache size Sci, the total

number of cache misses (CMi) is:

CMi �

8>>>><
>>>>:

N
3

Lci

�
1
B

�
2 +

(3Lci+2L
2

ci
)

Sci

�
+ 1

N
+ 4B+6Lci

Sci

�
for B <

p
Sci

N
3

Lci

n
4B
Sci

+ 2
B
� 2Sci

B2 + 2� 1
N
+ 6Lci

Sci

o
for

p
Sci � B <

p
2Sci

N
3

Lci

n
1 + 2

B
+
�
1 + Lc

B

��
B+2Lc
Sci

�o
for

p
2Sci � B

(2)

To verify the cache miss estimations, we conducted simulations using SimpleScalar for 6-loop TMM

with block data layout. The problem size was �xed at 1024� 1024. A 16KByte direct mapped
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Figure 9: Execution time of TMM of size 1024� 1024

cache was assumed (similar to L1 data cache in UltraSparc II). Figure 8 compares our estimated

values (given by Eq. (2)) with the simulation results.

3.3 Block Size Selection

To test the e�ect of block size, experiments were performed on several platforms. Figure 9 shows the

execution time of a 6-loop TMM with size 1024�1024 on UltraSparc II (400 MHz) as a function of

block size. It can be observed that block size selection is signi�cant for achieving high performance.

With canonical data layout, tiling technique is sensitive to problem and tile sizes. Several GCD

based tile size selection algorithms [6, 8, 12] were proposed to optimize tiled computation. However,

their performance is still sensitive to the problem size. In [13], TLB and cache performance were

considered in concert. This approach showed better performance than algorithms that separately

consider cache or TLB. However, all these approaches are based on canonical data layout. On the

other hand, ATLAS [26] utilizes block data layout. However, the best block size is determined

empirically at compile time by evaluating the actual performance of the code with a wide range of

block sizes.

In a multi-level memory hierarchy system, it is di�cult to predict the execution time (Texe) of

a program. But, Texe is proportional to the total miss cost of TLB and cache. In order to minimize

Texe, we will evaluate and minimize the total miss cost for both TLB and l-level caches. We have:

MC = TM �Mtlb +

lX
i=1

CMiHi+1 (3)

where MC denotes the total miss cost, CMi is the number of misses in the ith level cache, TM is

the TLB miss penalty, Hi is the cost of a hit in the ith level cache, and Mtlb is the penalty of a

TLB miss. The (l + 1)th level cache is the main memory. It is assumed that all data reside in the

main memory (CMl+1 = 0). Using the derivative of MC with respect to the block size, we can

�nd the optimal block size that minimizes the overall miss cost.
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Figure 10: Miss cost estimation for 6-loop TMM (UltraSparc II parameters)

For a simple 2-level memory hierarchy that consists of only one level cache and TLB, the total

miss cost (denoted as MCtc1) in Eq. (3) reduces to:

MCtc1 = TM �Mtlb + CM �H2;

where H2 is the access cost of main memory. In the above estimation, Mtlb and CM are substituted

with Eq.(1) and Eq.(2), respectively. Using the derivative of MC, the optimal block size (Btc1)

that minimizes the total miss cost caused by L1 cache and TLB misses is given as

Btc1 �

vuut�2L1cMtlb

Pv
+
h
2 +

3Lc1+2L
2

c1

Sc1

i
H2

�
Sc1

4H2

: (4)

We now extend this analysis to determine a range for optimal block size in a multi-level memory

hierarchy that consists of TLB and two levels of cache. The miss cost is classi�ed into two groups:

miss cost caused by TLB and L1 cache misses and miss cost caused by L2 misses. Figure 10 (a)

and (b) show the miss cost estimated through Eqs.(1) and (2). Fig. 10(a) is the separated TLB, L1,

and L2 miss cost, using UltraSparc II parameters. Fig. 10(b) shows the variance of the estimated

total miss costs as the ratio between L1 cache miss penalty (H2) and L2 cache miss penalty (H3)

varies. Using Eq.(4), we discuss the total miss cost for 3 ranges of block size:

Lemma 3.2 For B < Btc1, MC(B) > MC(Btc1).

Proof: Using the derivatives of TLB and cache miss equations (Eq.( 1) and (2) ), it can be easily

veri�ed that dMCtc1

dB
< 0 and dCM2

dB
< 0 for B < Btc1. This is shown in Figure 10(a). For B < Btc1,

TLB, L1, and L2 miss cost increase as block size decreases, thereby increasing the total miss cost.

Therefore, the optimal block size cannot be in the range B < Btc1. �

Lemma 3.3 For B >
p
Sc1, MC(B) > MC(

p
Sc1).

12

WallacJR
124



Proof: In the range B >
p
Sc1, TLB miss cost is optimized by tiling and block data layout.

However, the change in TLB miss cost is negligible as the block size increases. Since block size is

larger than L1 cache size, self-interferences occur in this range. The number of L1 cache misses

drastically increases as shown in Figure 10(a). For
p
Sc1 � B <

p
2Sc1, the ratio of derivatives of

Eq.( 2) for L1 and L2 misses is as follows:

�����H2
dCM1

dB

H3
dCM2

dB

����� = H2

H3

�������
N

3

Lc1

h
4
Sc1

+ 4Sc1
B3 � 2

B2

i
N3

Lc2

h
4
Sc2

�
�
2 +

3Lc2+2L
2

c2

Sc2

�
1
B2

i
������� :

Let B2 = �Sc1 (1 � � < 2). Note that Lc2 � Sc2.�����H2
dCM1

dB

H3
dCM2

dB

����� � H2

H3

�Lc2
Lc1

� Sc2

Sc2 � 2�Sc1
�
�
2�� 1 +

2p
�

p
Sc1

�
>
H2

H3

�Lc2
Lc1

� Sc2

Sc2 � 4Sc1
�
�
3 +

p
2 �
p
Sc1

�

In a general memory hierarchy system, Sc2

Sc2�4Sc1
� 1 since Sc1 � Sc2. Also,

Lc2

Lc1
� 1 and

p
2Sc1 >

H3
H2

. Therefore, �����H2
dCM1

dB

H3
dCM2

dB

����� > 1

Thus, although the number of L2 cache misses decreases (dCM2

dB
< 0), the total miss cost increases

for
p
Sc1 � B <

p
2Sc1 because the increase in L1 cache miss cost is larger than the decrease in

L2 cache miss cost. For B �
p
2Sc1, there is no reuse in L1 cache. Thus, the L1 cache miss cost

saturates. Figure 10(b) shows the change of the total miss cost as the ratio of H3

H2

varies. Even

though L2 miss penalty is 40 times that of L1 miss penalty, TM(B) > TM(
p
Sc1) for B �

p
2Sc1,

because L1 self-interference miss cost is dominantly large for B �
p
2Sc1. Therefore, the optimal

block size cannot be in the range B >
p
Sc1. �

Theorem 3.2 The optimal block size Bopt satis�es Btc1 � Bopt <
p
Sc1.

Proof: This follows from Lemma 3.2 and 3.3. Therefore, an optimal block size that minimizes

the total miss cost is located in

Btc1 � Bopt <
p
Sc1: (5)

We select a block size that is a multiple of Lc1 (L1 cache line size) in this range. �
To verify our approach, we conducted simulations using UltraSparc II parameters (Table 3).

Figure 11 shows the simulation results of 6-loop TMM using block data layout. As discussed, the

number of TLB and L2 misses decreased as block size increases. Also, the minimum number of L1

misses was obtained for B = 36 and then drastically increased for B > 45. Figure 12 shows the

total miss cost. For UltraSparc II, Btc1 = 32:2,
p
Sc1 = 45:3, and Lc1 = 4. Theorem 3.2 suggests

the range for optimal block size is to be 36{44. Simulation results show that the optimal block size

for this architecture was 44.

We also tested ATLAS on UltraSparc II. Through a wide search ranging from 16 to 44, ATLAS

found 36 and 40 as the optimal block sizes. These blocks lie in the range given by Eq. (5). We

further tested 6-loop TMM with respect to di�erent problem and block sizes. For each problem
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Figure 11: Simulation results of 6-loop TMM
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Figure 13: Optimal block sizes for 6-loop TMM

size, we performed experiments by testing block sizes ranging from 8{80. In these tests, we found

that the optimal block size for each problem size was in the range given by Eq. (5) as shown in

Figure 13. These experiments con�rm that our approach proposes a reasonably good range for

block size selection.

4 Experimental Results

To verify our analysis, we performed simulations and experiments on the following applications:

tiled matrix multiplication(TMM), LU decomposition, and Cholesky factorization(CF). The per-

formance of tiling with block data layout (tiling+BDL) is compared with other optimization

techniques: tiling with copying(tiling+copying), and tiling with padding(tiling+padding). For

tiling+BDL, the tile size (of the tiling technique) is chosen to be the same as the block size of

the block data layout. Input and output is in canonical layout. All the cost in performing data

layout transformations (from canonical layout to block data layout and vice versa) is included in

the reported results. As stated in [12], we observed that the copying technique cannot be applied

e�ciently to LU and CF applications, since copying overhead o�sets the performance improve-

ment. Hence we do not consider tiling+copying for these applications. In all our simulations and

experiments, the data elements are double-precision.

4.1 Simulations

To show the performance improvement of TLB and caches using tiling+BDL, simulations were

performed using the SimpleScalar simulator [2]. The problem size was 1024� 1024. Two sets of

architecture parameters were used: UltraSparc II and Pentium III. The parameters are shown in

Table 3.

Figure 14 compares the TMM simulations of di�erent techniques, based on UltraSparc II

parameters. Tiling+BDL has less L1 and L2 cache misses when compared with other techniques.

Block size 32 leads to increased L1 and L2 cache misses for block data layout because of the
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Figure 14: Simulation results for TMM using UltraSparc II parameters
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Figure 15: Total miss cost for TMM using UltraSparc II parameters
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Figure 16: Simulation results for LU using Pentium III parameters
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Figure 17: E�ect of block size on LU decomposition using Pentium III parameters

cache conicts between di�erent blocks. Tiling+BDL reduced 91{96% of TLB misses as shown in

Figure 14(a). This con�rms our analysis presented in Section 3.1. Figure 15 shows the total miss

cost (calculated from Eq. (3)) for TMM using block size 40� 40. L1, L2, and TLB miss penalties

were assumed to be 6, 24, and 30 cycles, respectively. This �gure shows that tiling+BDL results

in the smallest total miss cost and that the TLB miss cost with tiling+BDL is negligible compared

with L1 and L2 miss costs. Figure 12 shows the e�ect of block size on the total miss cost for

TMM using tiling+BDL. As discussed in Section 3.3, the best block size (44) is in the range 36{44

suggested by our approach.

Figure 16 presents simulation results for LU using Intel Pentium III parameters. Similar to

TMM, the number of TLB misses for tiling+BDL was almost negligible compared with that for

tiling+padding as shown in Figure 16(a). For both techniques, L1 and L2 cache misses were reduced

considerably because of 4-way set-associativity. For tiling+padding, when the block size was larger

than L1 cache size, the padding algorithm in [16] suggested a pad size of 0. There is essentially no
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Figure 18: Execution time comparison of various techniques for TMM on Pentium III

padding e�ect, thereby drastically increasing L1 and L2 cache misses. Figure 17 shows the block

size e�ect on total miss cost using tiling+padding and tiling+BDL. Tiling+padding reduced L1 and

L2 cache miss costs considerably. However, TLB miss costs were still signi�cantly high, a�ecting

the overall performance. As discussed in Section 3.3, the suggested range for optimal block size is

32{44. Simulations validate that the optimal block size achieving the smallest miss cost locates in

the range selected using our approach.

4.2 Execution on real platforms

To verify our block size selection and the performance improvements using block data layout,

we performed experiments on several platforms as tabulated in Table 3. gcc compiler was used

in these experiments. The compiler optimization ags were set to \-fomit-frame-pointer -O3

-funroll-loops". Execution time was the user processor time measured by sys-call clock(). All

the data reported here is the average of 10 executions. The problem sizes ranged from 1000� 1000

to 1600� 1600.

Figure 18 shows the comparison of execution time of tiling+BDL with other techniques. The

performance of tiling+TSS (tile size selection algorithm [6]) shown in this �gure selects block size

based on GCD computation. Tiling solves the cache capacity miss problem but it cannot avoid

Table 3: Features of various experimental platforms

Platforms Speed L1 cache L2 cache TLB

(MHz) Size Line Ass. Size Line Ass. Entry page Ass.

(KB) (Byte) (KB) (Byte) (KB)

Alpha 21264 500 64 64 2 4096 64 1 128 8 128

UltraSparc II 400 16 32 1 2048 64 1 64 8 64

UltraSparc III 750 64 32 4 4096 64 4 512 8 2

Pentium III 800 16 32 4 512 32 4 64 4 4
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conict misses. Conict misses are strongly related to the problem size and block size. This makes

tiling sensitive to problem size. As discussed on Section 3.2, block data layout greatly reduces

conict misses, resulting in smoother performance compared with others.

The e�ect of block size on tiling+BDL is shown in Figures 19{21. Various problem sizes

were tested and results on all these problems showed similar trends as in Figures 19{21. As an

illustration, the results for problem size of 1024 � 1024 are shown. As shown in Figures 19{21,

the optimal block sizes for Pentium III, UltraSparc II, Sun UltraSparc III and Alpha 21264 are 40,

44, 76, and 76 respectively. All these numbers are in the range given by our block size selection

algorithm. For example, the range for best block size on Alpha 21264 is 64{78. This con�rmed that

our block size selection algorithm proposes a reasonable range. As discussed earlier, block sizes 32

and 64 should be avoided (for use with block data layout) because the performance degrades due

to conict misses between blocks.
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Figure 19: E�ect of block size on TMM
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Figure 20: E�ect of block size on LU decomposition

20 40 60 80 100
1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

E
xe

cu
tio

n 
tim

e 
(s

ec
s)

(a) Alpha 21264

20 30 40 50 60
3

3.5

4

4.5

5

E
xe

cu
tio

n 
tim

e 
(s

ec
s)

(b) UltraSparc II

20 40 60 80 100
1.8

1.9

2

2.1

2.2

E
xe

cu
tio

n 
tim

e 
(s

ec
s)

(c) UltraSparc III

20 30 40 50 60
1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

E
xe

cu
tio

n 
tim

e 
(s

ec
s)

(d) Pentium III

Figure 21: E�ect of block size on Cholesky factorization
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Figures 22{24 show the execution time comparison of tiling+BDL with tiling+copying and

tiling+padding. In these �gures, block size for tiling+BDL was given by our algorithm discussed

in Section 3.3. The tile size for the copying technique was given by the approach in [12]. The pad

size was selected by the algorithm discussed in [16]. Tiling+BDL technique is faster than using

other optimization techniques, for almost all problem sizes and on all the platforms.
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Figure 22: Execution time of TMM
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Figure 23: Execution time of LU decomposition
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Figure 24: Execution time of Cholesky factorization

4.3 Block data layout and Morton data layout

Recently nonlinear data layouts have been considered to improve memory hierarchy performance.

One such layout is the Morton data layout(MDL) as de�ned in Section 2.1. Similar to block data

layout, elements within each block are mapped onto contiguous memory locations. However, Mor-

ton data layout uses a di�erent order to map blocks as shown in Figure 1. This order matches the
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Table 4: Comparison of execution time of TMM on various platforms: All times are in seconds.

(a) Pentium III

Size iterative+BDL recursive+MDL

1024 10.37 10.98

1280 20.43 20.64

1408 27.06 28.21

1600 39.77 43.78

2048 83.27 87.64

(b) UltraSparc II

Size iterative+BDL recursive+MDL

1024 18.87 21.80

1280 36.17 40.63

1408 48.76 53.70

1600 70.44 81.61

2048 149.65 170.86

Table 5: Comparison of execution time of LU decomposition on various platforms: All times are

in seconds.

(a) Pentium III

Size iterative+BDL recursive+MDL

1024 4.15 4.43

1280 8.10 8.10

1408 10.85 11.57

1600 15.85 18.44

2048 33.58 35.90

(b) UltraSparc II

Size iterative+BDL recursive+MDL

1024 8.77 9.94

1280 18.97 18.54

1408 22.76 22.45

1600 33.51 35.58

2048 75.30 81.66

access pattern of recursive algorithms. In this section, we compare the performance of recursive al-

gorithms using MDL (recursive+MDL) with iterative tiled algorithms using BDL (iterative+BDL),

for matrix multiplication and LU decomposition. We show that the performance of recursive+MDL

is comparable with that of iterative+BDL if the block size of MDL lies in the optimal block size

range for BDL as given by our algorithm (Eq. (5) in Section 3.3). However, if the block size of

MDL is outside this range, recursive+MDL is slower than iterative+BDL.

Similar to block data layout, block size for Morton layout also plays an important role in the

performance. However, due to recursion, the choice of block sizes is limited. For an N �N matrix,

if the depth of recursion is d, the block size of MDL is given by BMDL = N

2d
: Such a block size

can lie outside the optimal range given by our approach. Our experiment results show that this

degrades the overall performance.

Experiments using TMM and LU were performed on UltraSparc II and Pentium III. Table 4

shows the execution time comparison of MM using iterative+BDL with recursive+MDL. For it-

erative+BDL, we selected the block size according to the algorithm discussed in Section 3.3. For

recursive+MDL, we tested various recursion depths (resulting in various basic block sizes) and used

the best for comparison. For problem size 1280 � 1280 and 1408 � 1408, optimal block sizes for

recursive+MDL were 40 and 44 respectively, which were in the range given by our algorithm, 36{44.

Both the layouts showed competitive performance for these cases. For problem size 1600� 1600,

recursive+MDL was up to 15.8% slower than iterative+BDL. Among possible choices of 25, 50,

and 100, the performance of recursive+MDL was optimized at block size 25, where 25 = 1600
25

. This

is because it is outside the optimal range speci�ed by our algorithm. Table 5 shows the execution

time comparison of tiled LU decomposition using BDL and recursive LU decomposition [27] using

MDL. These results con�rm our analysis.

21

WallacJR
133



5 Concluding Remarks

This paper studied a critical problem in understanding the performance of algorithms on state-

of-the-art machines that employ multi-level memory hierarchy. We showed that using block data

layout, TLB misses as well as cache misses are reduced considerably. Further, we proposed a tight

range for block size using our performance analysis. Our analysis matches closely with simulation

based as well as experimental results.

This work is part of the Algorithms for Data IntensiVe Applications on Intelligent and Smart

MemORies (ADVISOR) Project at USC [1]. In this project we focus on developing algorithmic

design techniques for mapping applications to architectures. Through this we understand and create

a framework for application developers to exploit features of advanced architectures to achieve high

performance.
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Appendix A TLB performance of block data layout

This section gives a detailed proof of Theorem 2.2 in Section 2.2. The theorem is repeated for

convenience:

Theorem For accessing an array along all the rows and then along all the columns, block data

layout with block size
p
Pv �

p
Pv minimizes the number of TLB misses.

Proof: Suppose the block size B2 = kPv. Two cases (for k � 1 and k � 1) are discussed separately.

Case I: k � 1. We consider three scenarios for this case.

1. N

B
> Stlb

Accesses to the �rst row cause N

B
TLB misses. However, these entries cannot be reused since

Stlb is small. Therefore, TLB misses caused by row accesses is Trow = N

B
�N . Similarly, TLB

misses caused by column accesses are Tcol =
N

B
� k �N . Therefore, the total number of TLB

misses is

Tmiss =
N2

B
+ k

N2

B
=

N2

p
Pv

(
1p
k
+
p
k):

To minimize the total TLB misses,

dTmiss

dk
=

N2

p
2Pv

� 1p
k
� (1� 1

k
):

Therefore, as k decreases, the total number of TLB misses decreases. The total number of

TLB misses is minimized when k = 1. Note that when B =
p
Pv (k = 1), the number of TLB

misses is 2 N
2

p
Pv
, which is the lower bound given by Theorem 2.1.
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2. N

B
� Stlb

k

In this scenario, both column and row access can reuse TLB entries. Therefore, the total

number of TLB misses is

Tmiss = 2k
N2

B2
= 2

N2

Pv
:

This is equal to twice the number of TLB misses caused by all row accesses in canonical layout.

Therefore, this will be the minimum number of TLB misses for such an access pattern.

3. Stlb

k
< N

B
� Stlb

In this scenario, only row accesses can reuse TLB entries accessed in the previous row accesses.

TLB misses for row accesses are Trow = kN
2

B2 . Therefore, the total number of TLB misses is

Tmiss = k
N2

B2
+ k

N2

B
=
N2

Pv
+

N2

p
Pv

p
k:

As k decreases, TLB misses also decrease. The number of TLB misses for block data layout

is minimized when k approaches 1. Note that this scenario will reduce to scenario 2 when

k = 1. Therefore, the minimum number of TLB misses in this scenario is the same as that in

scenario 2.

Case II: k � 1. Three scenarios are discussed as follows:

1. N

B
> Stlb

k

The �rst row access causes kN
B
TLB misses. These entries cannot be reused in the next row

access. TLB misses caused by row accesses are Trow = kN
B
� N . On the other hand, the

�rst column access causes N

B
TLB misses, since all the elements in each block are stored in

one page. The TLB misses caused by column accesses is Tcol =
N

B
�N . Therefore, the total

number of TLB misses is

Tmiss = k
N2

B
+
N2

B
=

N2

p
Pv

(
1p
k
+
p
k):

To minimize the total TLB misses,

dTmiss

dk
=

N2

p
2Pv

� 1p
k
� (1� 1

k
):

Therefore, as k increases, the total number of TLB misses decreases. The total number of

TLB misses is minimized when k = 1, B =
p
Pv. Again, the minimum number is 2 N

2

p
Pv
, equal

to the lower bound given by Theorem 2.1.

2. N

B
� Stlb

In this scenario, both row and column access can reuse TLB entries. Therefore, the total

number of TLB misses is

Tmiss = 2k
N2

B2
= 2

N2

Pv
:

This is equal to twice the number of TLB misses caused by all row accesses in the canonical

layout. Therefore, it is the minimal number of TLB misses caused by all row (1st pass) and

then all column (2nd pass) accesses.
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3. Stlb <
N

B
� Stlb

k

In this scenario, only row accesses can reuse TLB entries accessed in the previous row accesses.

TLB misses of row accesses is denoted as: Trow = kN
2

B2 . Therefore, the total number of TLB

misses is

Tmiss = k
N2

B2
+
N2

B
=
N2

Pv
+

N2

p
kPv

:

As k increases, TLB misses decrease. Like scenario 3 in Case I, the minimum number of TLB

misses in this scenario is obtained when k = 1, and this number is the same as that in the

previous scenario.

According to the above analysis, block data layout with block size
p
Pv �

p
Pv minimizes the

total number of TLB misses. As the problem size (N) increases, this minimum number asymptot-

ically approaches the lower bound given by Theorem 2.1.

�

Appendix B Cache Miss Analysis

In this section, we provide detailed cache miss analysis for a tiled access pattern with block data

layout. Individual levels of cache are not considered explicitly, as this analysis is applicable to all

cache levels. We consider a tiled program that consists of nested loops. Each loop level is denoted

by the loop index i, j, l, etc. Arrays referenced by the program are denoted as u, v, etc. Within

an iteration of a loop l, a portion of an array v (called the footprint Fp(v)) is referenced. The body

of the loop l will be executed R(v) times, where R(v) is the reuse factor.

Let (i) ICMl(v) denote the number of intrinsic cache misses [12] caused by accessing array v

during the �rst iteration of loop l; (ii) SCMl(v) denote the number of self-interference misses when

array v is accessed in one iteration of loop l; (iii) CIM(v) denote the number of cross-interference

misses between array v and other arrays for an iteration of loop l. The number of cache misses

caused by array v for one iteration of loop l is thus:

CMl(v) = ICMl(v)� SCMl(v) +R(v)� fSCMl(v) + CIM(v)g (6)

CIM(v) in the above equation can be calculated as:

CIM(v) = ICMl(v)� PrCF (v); (7)

where PrCF (v) denotes the probability of conict between one element of array v and elements of

other arrays for loop l. It is given by

PrCF (v) =
X
u6=v

Provcf (v; u);

where Provcf (v; u) is the probability that an element of array v falls into the footprint of the array

u, accessed with a stride (su) in the cache. For simplicity, it is assumed that an element of array v

does not conict with elements in two or more arrays at the same time.
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The cache misses of array v is computed as follows:

CM(v) = NIO(l)� CMl(v); (8)

where NIO(l) denotes the total number of iterations of outer loops. The total number of misses in-

curred by accessing all arrays is the sum of misses incurred in accessing individual arrays (
P

i
CM(i)).

The above cache miss equation (Eq.( 8)) is applicable to any data layout with nested loops. But

the factors ( SCMl(v), Provcf (v; u), R(v), etc.) cannot be quanti�ed unless the data layout and

loop structure are known.

For block data layout, we can easily quantify SCMl(v) and Provcf (v; u) in the above equations.

The number of self-interferences can be derived by considering three ranges of block sizes. (i) When

the block size is less than the cache size, there is no self-interference. (ii) When the block size is

larger than twice the cache size, there is no reused element in cache, resulting in B
2

Lc
self-interferences

misses. (iii) When the block size is in between the above ranges,
2(B2�Sc)

Lc
self-interference misses

occur. Hence,

SCMl(v) =

8><
>:

0 for B <
p
Sc

2(B2�Sc)
Lc

for
p
Sc � B <

p
2Sc

B
2

Lc
for

p
2Sc � B

For loop l, Fp(v) elements of array v are accessed with a stride (sv). The average number of cache

lines occupied by Fp(v) elements is

NCL(v) =

(
Fp(v)sv
Lc

+ 1 if 1 < sv < Lc
Fp(v) otherwise

During a tiled computation, a block of array v is accessed in loop l. Hence, ICMl(v) is equal to the

number of cache lines, NCL(v). For loop l, array u is accessed with stride(su) whose footprint size

is Fp(u). It occupies NCL(u) cache lines in the cache. The probability of conicting with array u

is

Provcf (v; u) =
NCL(u)

Sc=Lc
:

Therefore, the cache misses of array v on block data layout is

CM(v) = NIO(l)�

8<
:NCL(v)� SCMl(v) +R(v)�

0
@SCMl(v) +NCL(v)�

X
u6=v

NCL(u)Lc

Sc

1
A
9=
; : (9)

Consider the 6-loop TMM shown in Figure 2(b). The reuse factors and footprint sizes of

arrays X , Y and Z can be determined. The values are shown in Table 6. For example, consider an

array Y in loop i. B2 elements of Y are referenced in each iteration of loop i. These B2 elements

are reused N times. NIO(l) can be obtained directly from the code (Figure 2(b)). For example,

NIO(i) = N3=B3. According to Eq.(9), the number of cache misses for Y and Z are as follows:

CM(Y) �

8>><
>>:

N
3

Lc

n
1
N
+
�
1 + Lc

B2

�
3(B+Lc)

Sc

o
for B <

p
Sc

N
3

Lc

n
2Sc
B2

�
1
N
� 1

�
+ 2� 1

N
+
�
1 + Lc

B2

�
3(B+Lc)

Sc

o
for

p
Sc � B <

p
2Sc

N
3

Lc
for

p
2Sc � B

CM(Z) � N3

Lc

�
1

B
+

�
1 +

L

B

�
(B + 2L)

Sc

�
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Table 6: Parameters of TMM

Array Reuse Factor Footprint

i k j i k j

X(i; k) B B 1

Y(k; j) N B2 B

Z(i; j) B B B

In the 6-loop TMM, each element of array X is immediately allocated to a register. So, its proba-

bility of conicts with other arrays is 0. Thus, the number of cache misses for array X is

CM(X) =
N3

BLc
:

The total number of cache misses for the 6-loop TMM with block data layout is thus:

CM =
X
v

CM(v) = CM(X) + CM(Y) + CM(Z) (10)

�

8>>><
>>>:

N
3

Lc

n
1
B

�
2 +

(3Lc+2L2

c
)

Sc

�
+ 1

N
+ 4B+6Lc

Sc

o
for B <

p
Sc

N
3

Lc

n
4B
Sc

+ 2
B
� 2Sc

B2 + 2� 1
N
+ 6Lc

Sc

o
for

p
Sc � B <

p
2Sc

N
3

Lc

n
1 + 2

B
+
�
1 + Lc

B

��
B+2Lc
Sc

�o
for

p
2Sc � B

(11)

The above analysis focuses on the access pattern of 6-loop TMM. Because matrix multiplication

is the kernel of many linear algebra computations, the analysis can be generalized or directly applied

to other linear algebra applications.
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During the course of this project we have focused on techniques for improving cache 
performance on traditional, cache-based processors.  The majority of our work was done for the 
transitive closure stressmark, although we have also shown that these techniques can be used on 
a large class of algorithms.  Results along this line are shown in the referenced conference 
papers. 

Significant contributions include the Unidirectional Space Time Representation (USTR) and 
a novel recursive implementation of the Floyd-Warshall algorithm.  Using the USTR it is 
possible to quickly generate cache-friendly implementations of a large class of algorithms.  
While recursion has been used to generate cache-friendly implementations of other algorithms, 
due to the non-trivial data dependences in the Floyd-Warshall algorithm, no recursive 
implementation of this algorithm has been shown at this time. 

Also as part of this project we designed and implemented a simulator for Processing in 
Memory architectures.  Processing-In-Memory (PIM) systems propose to solve the processor-
memory gap by achieving tremendous processor-memory bandwidth by combining processors 
and memory together on the same chip substrate.  Notre Dame, USC ISI, Berkeley, IBM, and 
others are developing PIM systems and have presented papers demonstrating the performance 
and optimization of several benchmarks on their architectures.  While excellent for design 
verification, the proprietary nature and the time required to run their simulators are the biggest 
detractors of their tools for application optimization.  A cycle-accurate, architecture specific 
simulator, requiring several hours to run, is not suitable for iterative development or experiments 
on novel ideas.  We provide a simulator that will allow faster development cycles and a better 
understanding of how an application will port to other PIM architectures.  A brief description of 
the simulator and some sample results are shown in Section 7. 
 
1. Architecture Description 

 
We use four different architectures for our experiments.  The Pentium III Xeon running 

Windows 2000 is a 700 MHz, 4 processor shared memory machine with 4 GB of main memory.  
Each processor has 32 KB of level-1 data cache and 1 MB of level-2 cache on-chip.  The level-1 
cache is 4-way set associative with 32 B lines and the level-2 cache is 8-way set associative with 
32 B lines. 

The UltraSPARC III machine is a 750 MHz SUN Blade 1000 shared memory machine 
running Solaris 8.  It has 2 processors and 1 GB of main memory.  Each processor has 64 KB of 
level-1 data cache and 8 MB of level-2 cache.  The level-1 cache is 4-way set associative with 32 
B lines and the level-2 cache is direct mapped with 64 B lines. 

The MIPS machine is a 300 MHz R12000, 64 processor, shared memory machine with 16 
GB of main memory.  Each processor has 32 KB of level-1 data cache and 8 MB of level-2 
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cache.  The level-1 cache is 2-way set associative with 32 B lines and the level-2 cache is direct 
mapped with 64 B lines. 

The Alpha 21264 is a 500 MHz uniprocessor machine with 512 MB of main memory.  It has 
64 KB of level-1 data cache and 4 MB of level-2 cache.  The level-1 cache is 2-way set 
associative with 64 B lines and the level-2 cache is direct mapped with 64 B lines.  It also has an 
8 element fully-associative victim cache.  All experiments are run on a uniprocessor or on a 
single node of a multiprocessor system. 

 
2. Optimized Implementations 

 
In this section, we give a description of the optimizations performed for each 

implementation.  Also included is a description of the baseline implementations.  Pseudo code is 
included where it benefited the description of the implementations.  More details regarding the 
implementations can be found in [3] and [4]. 

 
2.1. Normal Floyd-Warshall – Baseline 

A straightforward implementation of the Floyd-Warshall algorithm similar to the code given 
in the Stressmark specification was compiled using all optimizations available in the GNU C++ 
(gcc) compiler and the Microsoft Visual C++ compiler.  The execution time of the kernel was 
collected and used as the baseline for the optimized implementations of the Floyd-Warshall 
algorithm.  This same compilation and execution time collection was used for all 
implementations. 

 
2.2. Floyd-Warshall with Tiling and Copying – Baseline 

Tiling with copying is a standard cache-friendly optimization that can be performed using 
current research compilers.  Because of this, we applied tiling with copying to the Floyd-
Warshall algorithm.  Due to data dependences current research compilers can only tile the inner 
two loops.  This tiling was performed and the results also considered a baseline optimization. 

 
2.3. Floyd-Warshall with Tiling and the Block Data Layout 

In order to avoid the overhead of copying, the Block Data Layout (BDL) was used for the 
adjacency matrix.  The BDL is a known layout that places a tile of data in contiguous locations 
instead of a row.  As in the tiling with copying optimization, only the inner two loops were tiled 
due to data dependences.  Since this is also a known technique, it was also considered a baseline 
optimization. 

 
2.4. Simple USTR Floyd-Warshall 

In [3], we developed the Unidirectional Space Time Representation (USTR) and showed that 
it can be used to generate cache friendly implementations of a large class of algorithms.  As it is 
very similar to a systolic array representation, as a first approach we used a systolic array 
implementation of the Floyd-Warshall algorithm.  Pseudo code for the simple USTR 
implementation is given in Figure 1.  In [3], we compared the results of this optimization with 
the results from the previously mentioned baselines. 

WallacJR
142



 
2.5. Optimized USTR Floyd-Warshall 

In [4], we discuss a tiled implementation of the Floyd-Warshall algorithm, which can also be 
shown to fit in the USTR.  This we refer to it here as an optimized USTR implementation.  In 
order to eliminate the three passes present in the simple USTR implementation, we reorder the 
computation of tiles in the following fashion (see Figure 2).  We first compute the (k,k)th tile (the 
darkest tiles shown in Figure 2), the the kth row and column of tiles (the grey tiles), and finally 
the remainder of the matrix (the white tiles). 

 
2.6. Recursive Floyd-Warshall 

In [4], we also discuss a novel recursive 
implementation of the Floyd-Warshall algorithm.  The 
recursive implementation represents a cache oblivious 
implementation of the Floyd-Warshall algorithm and 
achieves improved cache performance at each level of 
the memory hierarchy.  Pseudo code is given in Figure 
3.  See [4] for more details regarding the recursive 
implementation include a proof of correctness and of 
optimality with respect to processor-memory traffic. 

 
2.7. Basic Dijkstra’s – Baseline 

We also examined optimizing Dijkstra’s algorithm 
for the all pairs shortest path problem.  For the baseline 
we again used the best compiler optimizations available 
to optimize a straightforward code.  We use a binary 
heap to implement the priority queue and store the 
graph as an adjacency list. 

Cache-Friendly_FW(A, C, N, b) 
 
1. for l <- 1 to 3 
2. for bi <- 1 to N/b 
3. for bj <- 1 to N/b 
4. load BxB elements of C at (bi,bj) 
5. for bk <- 1 to N/b 
6. load BxB elements of A at (bi,bk) 
7. load BxB elements of A at (bk,bj) 
8. for i <- bi to bi + (b-1) 
9. for j <- bj to bj + (b-1) 
10. for k <- bk to bk + (b-1) 
11. C(i,j) <- min(C(i,j), A(i,k) + A(k,j)) 
12. return C 

Figure 1:  Pseudo code for the cache-friendly implementation 
of the Floyd-Warshall algorithm.  A is the input 
matrices, C is the output matrix, N is the dimension 
of all matrices, and b is the tile size. 

Floyd-Warshall-Recursive(A, B, C) 
 
1. if (not base case) { 
2. A11 ← FWR(A11, B11, C11); 
3. A12 ← FWR(A12, B11, C12); 
4. A21 ← FWR(A21, B21, C11); 
5. A22 ← FWR(A22, B21, C12); 
6. A22 ← FWR(A22, B22, C22); 
7. A21 ← FWR(A21, B22, C21); 
8. A12 ← FWR(A12, B12, C22); 
9. A11 ← FWR(A11, B12, C21); 
10. } 
11. else { 
12. /* run base case */ 
13. } 
14. return A 

Figure 3:  Pseudo code for the 
recursive version of the 
Floyd-Warshall algorithm 

 

 

Figure 2: Tiled 
implementation of FW 
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2.8. Cache-Friendly Dijkstra’s 

In order to match the data access pattern of Dijkstra’s algorithm to the data layout, we 
replaced the adjacency list with the adjacency matrix and replaced the binary heap with an array 
and used a linear search to find the minimum value.  In this way we are able to take advantage of 
data reuse at the cache line level and simplify prefetching. 

 
3. Implementation Documentation 

 
It is a well-known fact that the speed of modern processors is increasing at a rate of roughly 

60% per year while the speed of memory is increasing at a rate of roughly 7% per year.  This 
difference is often referred to as the processor-memory gap, and it causes the latency to memory 
as seen by the processor to increase significantly with each passing year.  In order to hide this 
increasing latency, caches have been designed to take advantage of locality of reference; the fact 
that once an element is accessed there is a good chance that it and/or elements near will be 
accessed in the near future.  The cache is much smaller than main memory and is placed much 
closer to the processor in terms of latency.  Modern processors are including more levels of 
cache, each level larger in size and farther from the processor in terms of latency. 

Invariably the processor will access data that is not in the cache and this will result in a cache 
miss.  Cache misses can be categorized into one of three categories: cold misses, capacity misses, 
and conflict misses.   A cold miss occurs the first time a data element is accessed.  These misses 
are unavoidable.  A capacity miss occurs if the working set of the application is larger than the 
cache.  These misses can be avoided by either decreasing the working set or increasing the size 
of the cache.  A conflict miss occurs if two or more data elements in the working set map to 
same place in the cache and the replacement of one results in a subsequent cache miss when that 
element is accessed.  This type of miss can be avoided in a number of ways including improved 
data access patterns, improved data layout, reducing the working set, etc [5]. 

Two other issues that should be addressed are cache pollution and TLB misses.  TLB misses 
are similar to cache misses except that they refer to misses in the Translation Look-aside Buffer.  
They can be categorized the same as cache misses and reducing them follows a similar pattern.  
Cache pollution is a somewhat different issue.  This refers to when a cache line is brought into 
the cache and only a small portion of it is used before it is pushed out of the cache.  A large 
amount of cache pollution will increase the bandwidth requirement of the application, even 
though the application is not utilizing more data. 

Based on this discussion, the keys to improve the performance of the memory system are as 
follows: increase data reuse, decrease cache conflicts, and decrease cache pollution.  The 
techniques that we use to achieve these ends can be categorized as data layout optimizations and 
data access pattern optimizations.  In our data layout optimizations we attempt to match the data 
layout to an existing data access pattern.  For example, we use the Block Data Layout to match 
the access pattern of a tiled algorithm.  In our data access pattern optimizations, we design both 
novel and trivial optimizations to the algorithm to improve the data access pattern.  For example, 
we implemented both a tiled implementation and a novel recursive implementation of the Floyd-
Warshall algorithm to improve the data access pattern.  The techniques that we use are 
algorithmic in nature, meaning that we assume no control of the hardware or the operating 
system. 
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While these techniques are common in the area of 
dense linear algebra problems, transitive closure presents 
a very different set of challenges from those present in 
dense linear algebra problems such as matrix multiply 
and FFT.  In the Floyd-Warshall algorithm, the 
operations involved are comparison and add operations.  
There are no floating-point operations as in matrix 
multiply and FFT.  We are also faced with data 
dependences that require us to update the entire NxN 
array Dk before moving on to the (k+1)th step (see Figure 
4).  This data dependence from one kth loop to the next 
eliminates the ability of any commercial or research 
compiler to improve data reuse.  We have explored using 
the SUIF research compiler and found that it cannot 
perform the optimizations discussed in Section 3 without user provided knowledge of the 
algorithm.  These challenges mean that although the computational complexity of the Floyd-
Warshall algorithm is O(N3), equivalent to matrix multiply, often transitive closure displays 
much longer running times. 

In Dijkstra’s algorithm and Prim’s algorithm, the largest data structure is the graph 
representation.  An optimal representation, with respect to space, would be the adjacency-list 
representation.  However, this involves pointer chasing when traversing the list.  The priority 
queue has been highly optimized by various groups over the years.  Unfortunately, the update 
operation is often excluded, as it is not necessary in such algorithms as sorting.  The 
asymptotically optimal implementation that considers the update operation is the Fibonacci heap.  
Unfortunately this implementation includes large constant factors and did not perform well in 
our experiments. 

Access to source code is obviously required for our optimizations.  Changes to the source 
code are fairly minor and are most often isolated to the inner loop or to the loop structure of the 
transitive closure kernel.  In some cases, such as when using the Block Data Layout or in the 
optimization to Dijkstra’s algorithm, it may be necessary to change the data structure or data 
layout for the kernel.  We achieved this by allocating additional space and copying the data into 
the correct format.  Upon completion the result was copied back to the original format.  Since 
transitive closure is an O(N3) complexity algorithm, copying O(N2) data required a very small 
amount of time relative to the total running time.  For any optimization that requires copying, the 
running time given includes the time for copying.  Possibly the most difficult task is choosing the 
appropriate block size for the tiled implementations.  This was done experimentally on one 
problem size on each machine and the block size found was used for all problem size.  ATLAS 
provides a technique for automatically performing this experimentation at compile time, and a 
similar approach could be developed for these implementations. 

 
4. Output Data 

Output data for the transitive closure stressmark has been included in the attached zip files.  
File descriptions are as follows.  Because of the number of implementations and input files, we 
do not provide results for every input file on every machine.  Output is given for input files 01, 
04, 09, and 18 on the Pentium III platform. 

 

kth row

kth column

(i,j)th element

Dk+1
(i,j) = min{Dk

(i,j), Dk
(i,k)+Dk

(k,j)}

Figure 4: kth iteration of outer loop 
in Floyd-Warshall 
Algorithm 
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• djk_cf_tc[01|04|09|18].stm.out Cache-friendly implementation of Dijkstra’s algorithm. 
• sa_bdl_tc[01|04|09|18].stm.out Simple USTR implementation of the Floyd-Warshall 

algorithm. 
• fw_ustr_tc[01|04|09|18].stm.out Optimized USTR implementation of the Floyd-Warshall 

algorithm. 
• Fw_rc_tc[01|04|09|18].stm.out Recursive implementation of the Floyd-Warshall 

algorithm. 
 

5. Measurement Data 
 
Each implementation was compiled using the most optimizations available in gcc and timing 

data was collected using the system time function.  With the exception of the Pentium III, the 
resolution was in microseconds.  The Pentium III had a resolution in milliseconds.  The results 
for the recursive implementation of the Floyd-Warshall algorithm on the MIPS machine were not 
gathered due to increased load on the machine.  The machine is administered by the University 
and shared by a large number of users.  This is also the cause of unexpected variations in the 
results.  Implementations are referred to by their Subsection number in Section 2. 
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6. Comments 
 
Based on our results, it seems clear that performance on current microprocessors can be 

significantly improved by using simple algorithmic changes.  Moreover, these changes require 
no control over the operating system or the hardware. 

In our experiments, we did not address the topic of disk access and therefore assume that the 
problem size fits into the main memory.  This limited our experiments to the problem size of 
4096.  Based on the results and the analytical analysis presented in [3] and [4], the techniques are 
scalable to larger systems and larger problem sizes.  In these papers, we also show that the 
processor-memory traffic is reduced by a factor proportional to the cache size.  For this reason, 
more speedup can be attained if a larger cache is available. 

Tiling and recursion are also used as computation decomposition techniques for 
parallelization. Good parallelized code should have minimal communication and sharing 
between computational nodes, thus our pursuit of data locality also benefits parallelization. Our 
sequential FW implementations and matching implementation can easily be transformed into 
parallel code. Computation and data are already decomposed, what need to be added are 
computation and data distribution, synchronization and communication primitives. One of our 
future directions will be to implement parallel versions of the Floyd-Warshall algorithm and 
matching algorithm based on the work presented in this paper. 

 
 
7. PIM Simulator 

The PIM simulator is a wrapper around a set of models.  It is written in Perl, because the 
language’s powerful run-time interpreter allows us to easily define complex models.  The 
simulator is modular; external libraries, visualization routines, or other simulators can be added 
as needed.  The simulator is composed of various interacting components.  The most important 
component is the data flow model, which keeps track of the application data as it flows through 
the host and the PIM nodes.  We assume a host with a separate, large memory.  Note that the 
PIM nodes make up the main memory of the host system in some PIM implementations.  The 
host can send and receive data in a unicast or multicast fashion, either over a bus or a non-
contending, high-bandwidth, switched network.  The bus is modeled as a single datapath with 
parameterized bus width, startup time and per element transmission time.  Transmissions over 
the network are assumed to be scheduled by the application to handle potential collisions.  The 
switched network is also modeled with the same parameters but with collisions defined as 
whenever any given node attempts to 
communicate with more than one other 
node (or host), except where multicast is 
allowed.  Again, the application is 
responsible for managing the scheduling 
of data transmission.  Communication 
can be modeled as a stream or as 
packets. 

Computation time can be modeled at 
an algorithmic level, e.g. n lg(n) based 
on application parameters, or in terms of 
basic arithmetic operations.  The 

 

Figure 5: Speedup from 1 processor to n 
processors with DIVA model. 
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accuracy of the computation time is 
dependent entirely on the application 
model used.  We assume that the 
simulator will be commonly used to 
model kernel operations such as 
benchmarks and stressmarks, where 
the computation is well understood, 
and can be distilled into a few 
expressions.  This assumption allows 
us to avoid the more complex issues 
of the PIM processor design and 
focus more on the interactions of the 
system as a whole. 

Figure 5 shows the overall speedup of the biConjugate Gradient stressmark with respect to 
the number of active PIM elements.  It compares results produced by our tool using a DIVA 
parameterized architecture to the cycle-accurate simulation results in [2].  Time is normalized to 
a simulator standard. 

Figure 6 is a sample output graph from [1] for a BiCG application with parameters similar to 
that of the DIVA architecture with a parallel, non-contending network model, application 
parameters of n(row/column size of the matrix)=14000 and nz(non zero elements)=14 
elements/row.  Figure 6 shows the PIM-to-PIM transfer cost, Host-to-PIM transfer costs, 
computation time, and total execution time(total) as the number of PIM nodes increases under a 
DIVA model. The complete simulation required 0.21 seconds of user time on a Sun Ultra250 
with 1024 MB of memory.  For more results and discussion see [1]. 
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h
Source Code Contents (Code and Makefiles are contained on included compact disc)

Cache Optimization Codes

Cholesky Method0

Contains various implementations for the Cholesky
method: blocking, tiling, tiling with padding, Morton data layouts,
and Morton data layouts with recursion.

To build code,

Output: timing data

Minimum Spanning Tree0

Dijkstra's and Prim's Algorithm: Cache Friendly Implementations

Input files are from the DIS Stressmark suite.

Compiler options:

Win32 withCXX = gcc Version> 2.95, all platforms; tested on Solaris, Linux,

Cygwin
CXXFLAGS = -Wall
CXXOPT = -03

To build code,

Output: timing data

Floyd- W arshaU Algorithm0

Recursive implementation of the Floyd-Warshall algorithm
Tiled implementation of the Floyd-Warshall algorithm

Input files are generated by ../gen_input which creates NxN matrix

Compiler operations:

CXX = gcc Version> 2.95, all platforms; tested on Solaris, Linux, Win32 with

Cygwin
CXXFLAGS = -Wall
CXXOPT = -03

To build code, 'make'

Output: timing data

1
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LV Decomposition0

-.
Tiling, copying, padding, Morton layouts, blocking and recursive
implementations of the LV Decomposition algorithm

To build code, 'make'

Output: timing data

Matrix Multiplication Optimizations0

Tiling and block data layout optimizations for Matrix Multiplication

Input files are from the illS Stressmark suite.

Compiler options:

CXX = gcc Version> 2.95, all platforms; tested on Solaris, Linux, Win32 with

Cygwin
CXXFLAGS = -Wall
CXXOPT = -03

To build code, 'make all'

Output: timing data
""'"

('
Transitive Closure0

Unified Space-Time Representation with Block Data Layout implementation of
Transitive Closure

Input files are generated by ../gen_input which creates NxN matrix

Compiler options:

CXX = gcc Version> 2.95, all platfonns; tested on Solaris, Linux, Win32 with

Cygwin
CXXFLAGS = -Wall
CXXOPT = -03

To build code, 'make'

Output: timing data

Flexible Memory Architecture Simulator and Trace Generators

EMSimulator: Simulator for explicit cache management. Simulates split
temporal spatial cache architectures.

(Includes Makefile for gcc Version> 2.95, any platform

2
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To build code, 'make'

Trace Generation Programs:
Compile with MSYCC, Win32

When the executable is run, it produces intermediate files and then invokes
the simulator program. Final output is cache miss rates.

Trace_Matrix: Trace generation for matrix stressmark.

Trace_Neighbor: Trace generation for neighborhood stressmark.

Trace_Tree: Trace generation for binary tree.

Trace_Dijks1ra: Trace generation for Dijkstra's algorithm.

Exp _Matrix: Experiment of matrix stressmark on SUN machines.
Includes Makefile for Solaris
Requires GCC 3.0+, Sun machine/ UltraSP ARC III Cu

PIM Simulator and Sample Configuration Files

pimsim.pl: main simulator
wrapper.pl: GUI wrapper
fftp.inibicg: BiConjugate Gradient on Berkeley DIY A
node l.ini
node l.inia
node2.ini: Molecular Dynamics on ffiM BlueGene/L
node2.inia

These files comprise the PIM Simulator developed by the ADVISOR project. The
sources require at least Perl installed and in the system path to run. The GUI wrapper
requires Perl/Tk 5.0 to produce the user interface and chart generators.

The main simulator file is pimsim.pl

Create directory Isim under pimsim directory
Run 'perl wrapper .pI' to start GUI
else 'perl pimsim.pl -f filename'

Some sample modeling systems

'perl pimsim.pl-f nodel.ini' is a sample recursive system that models molecular
dynamics on BlueGene/L

'perl pimsim.pl-f ffip.inibicg' is a good approximation to BiCG on DNA
Output is diagnostic information and then timing for all runs of the simulator.
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